A Modern-Day Side-Channel Attack: Utilises Several Vulnerable
Channels on Android to Detect your Identity

Amin Mansour

Abstract

Side-channels attacks have always existed. Starting with Android Marshmallow (Android
6), access to these side channels have been constrained to protect against possible infor-
mation leaks between apps. In this paper, we propose a simple technique that can infer
certain activities from the way an app uses external storage and use it to build an attack.
Such occurrences arise from vulnerabilities in the app’s logic. It also comes from Android’s
inability to isolate and safeguard adequately. In this paper, we utilise this vulnerability to
attack the Instagram app and find the user’s identity. We do so by associating local activity
(detectable through changes in the external storage amongst other things) with events that
occur remotely on Instagram. These connections can be formed from a mixture of strate-
gies, each achieving varying levels of success. This paper details a complete analysis of the
different strategies considered. We put forward a fully-operational and scalable approach
that successfully identifies the user’s profile.

Project source : https://gitlab.doc.ic.ac.uk/am318/side-channel-attack/

1. Introduction

In this paper, we introduce a single attack which takes advantage of several side-channels
available on Android. Android has become the most active platform, and the Play Store
commands the largest repository of any market. The Android operating system welcomes
variation amongst apps while trying to protect itself from vulnerabilities. This has proved
to be very challenging in practice with the number of attacks increasing each year [1]. Our
focus in this project is towards the external storage and in particular how apps utilise it
to carry out functionality. Android provides apps with individual private folders that are
isolated from all possible entry points. The containment prevents any third-party apps (or
users) having access to sensitive information belonging to individual apps. However, some-
times it is necessary to store data publicly through the external storage, i.e. data may need
to persist independently of the app. For this, there is no well-defined standard, and as a
result, many apps fail to handle their data securely. Many apps use external storage to
store non-sensitive data that when combined with various techniques can be used to obtain

Preprint submitted to Imperial May 1, 2019

private information. A malicious app can exploit these leaks to detect information relating
to the user without requiring any critical permissions. As we will see later, our attack builds
on this idea. We will show how the Instagram app is susceptible to the same problem and
how we can use it to derive the identity of the user.

Apps typically generate a significant amount of data. How securely these apps store in-
formation depends on the app’s design and how well the Android OS acts to secure vulner-
able channels that might leak information across. Many of the attacks focus on exploiting
vulnerabilities in implementation. Android rarely depreciates code. In development, there
are usually many ways to implement a feature, and the developer may not be aware of the
subtle differences between each. This confusion can cause vulnerabilities in the code that
may become apparent later. Our attack principally targets apps that leak data to public
storage. We use instances of this to infer the activity that is occurring on the foreground and
utilise it to obtain the identity of the person. Instagram will be the app that will be used
to demonstrate this attack. A web crawler will crawl known endpoints on the Instagram
platform. We also provide flexible strategies in protecting against this attack. One of them
includes partitioning the external storage into isolated regions and enforcing apps that use
external storage to specify access to those partitions. It would implement coarse-grained
access control but might be problematic for apps which utilise other directories in their
functionality.

In this paper, we will start by giving a brief overview of the main areas of the Android
operating system. It will provide enough overview to appreciate this attack fully. We will
then go in detail on how to implement this side-channel attack. After that, we extend the
attack by showing how we can utilise it to identify a user on Instagram. This will include a
comprehensive study of the different techniques and show how the attack was constructed.
For our evaluation section, we test the attack on a target device and examine how successful
it is at identifying the identity of a user.

2. Background

In this section we give a brief overview of the Android platform. It will provide enough of
an overview to fully understand the approach taken in this paper.

2.1. Android Ecosystem

The Android adoption rate has increased with it now commanding an 85% share in the
mobile market [8]. An amalgamation of its open source licensing, its expansive and open app
market, and its widely customizable interface make it extremely popular amongst consumers
and hardware vendors.

Android is an open-source mobile operating system built on top of other known open source
systems - most notably the Linux OS. Though Android is built on Linux and relies heavily

2

on much of its infrastructure - most notably the kernel - Android has become a fully-edged
operating system that diverges from Linux. Android presents a vast array of frameworks
that are constructed on top of the kernel and operate on the user space level. They collec-
tively work to limit and constrain specific Linux capabilities, whilst enhancing more obscure
Linux features. Most of the later versions of Android primarily focus on modifications to
these frameworks/libraries, with only a few affecting the underlying system kernal.

Android’s extensive set of frameworks is what allows Android to break free from it be-
ing just another embedded Linux distribution system like MontaVista - the primary mobile
system that preceded Android. Frameworks facilitate and simplify the creation procedure
of applications, permitting developers to use the higher-level Java language, instead of C++
or C. Java along with the Android run time environment (ART) (Dalvik in versions prior
to Marshmallow) allows apps to be ported across devices with relative ease. This process
involves taking the Java code associated with an app and converting it into DEX bytecode.
The DEX bytecode is independent of any underlying device. The DEX bytecode is then
compiled to native machine code and packaged, ready to be executed on the device. ART
introduces an ahead-of-time compiler which carries out this translation once at installation
time. All subsequent runs of an app requires the retrieval of the compiled code from mem-
ory. For later versions of Android, ART comes with a just-in-time compiler which allows for
optimisations to be made during the app’s lifecycle on a device.

2.2. Application Sandbox

Frameworks also allows developers to utilise APIs, which grant both resource and hard-
ware access to third-party apps. Android ecosystem uses Linux user-based security capa-
bilities to isolate app resources and protect both the apps and the underlying system from
malicious apps. It does this, by assigning an exclusive user ID (UID) to each process. This
UID is used by Android to enforce constraints and provide isolation. By default, only the
(third-party) app that initiates a process can access the resources related to that process.
Libraries, frameworks, runtime environment, and all applications, run within this Applica-
tion Sandbox.

Further enhancements have been introduced over time with later versions of Android. They
have significantly strengthened the original UID-based discretionary access control sandbox
introduced in legacy versions of Android. In Android 9 all third-party apps with targetS-
dkVersion >= 28 must run in their own SELinux sandboxes, providing mandatory access
control on a per-app basis.

2.8. Permission Model

As was discussed in the previous section, Android apps are self-contained and by default
only have access to their own files and a minimal set of low-risk system services. For a
third-party app to obtain additional capabilities, it can request for additional permissions
at run-time. Pre-historically these types of permissions were granted at installation time.
This approach was later replaced on Marshmallow for a more dynamic strategy, as to pre-
vent malicious apps taking advantage from the lack of information available to the user at
installation time. The implications of the install-time approach have been covered in detail
in previous works [9].

The Android SDK comes with a set of predefined permissions that define access to un-
derlying system resources. These permissions are broad and group many similar capabilities
under one assignment. The user is not expected to accept all permissions individually. This
process would be too intrusive. For an app requesting a permission instance, the user is
prompted with the permission at run-time along with the other permissions that share the
same group and are required by the app. If the permission instance is granted, then the An-
droid system allows the desired functionality to take place. When a permission instance from
the group is later requested it is automatically granted. With later versions of Android, newer
permissions are added to the predefined set of permissions. They can either arise with the
emergence of newer technologies (i.e. USE_BIOMETRIC) or protect pre-existing vulnerable
channels that were once believed to be safe (i.e. READ_CLIPBOARD_IN_.BACKGROUND).
Also, more general existing permissions can be broken down into smaller permissions.
READ_EXTERNAL_STORAGE on Android Q (9) is broken down into READ_MEDIA _VIDEO,
READ_MEDIA _IMAGES and READ _MEDIA_AUDIO.

Applications must specify the permissions they require in the AndroidManifest.xml located
within the source files. Permissions are classified into protection levels. Permission pro-
tection levels characterise the potential risk implied in the permission and how the An-
droid system should deal with them. ”Normal” protection level is the default protection
level. Permissions classified as such are automatically granted at installation time with-
out the need of prompting the user. They are generally considered to be low risk. AC-
CESS_.NETWORK_STATE is an example of a normal-level permission. The ”Dangerous”
protection level, in contrast, labels permissions of high risk. The user at run-time must
explicitly grant this type of permission.

In this project, our malicious SDA app requires the READ_EXTERNAL_STORAGE per-
mission. Before Android KitKat (4), this permission was defined as a normal-level permis-
sion but in later versions was reclassified as dangerous. Today it requires of the user at
run-time to grant it. In Android version Q (9), the permission is broken up into smaller

permissions. The attack proposed is still possible in this context. We must request for the
READ_MEDIA _IMAGES permission instead.

The opposite is true with the INTERNET permission, which pre-historically allowed apps to
access the internet. It was defined in previous versions of Android as a dangerous permission
requiring approval at installation time. It was deprecated as a permission in later versions.
Third-party apps now have automatic access to the internet. The reasons given by Google
for this decision was that the user’s data is protected on the Android system by default,
and as a result, no additional risk is added if third-party apps can access the internet [10].
The problem with this assumption is that in practice there is no way of validating the se-
curity of the Android system. As we will later see, we describe a way of obtaining sensitive
information from side-channels on the Android operating system. Another more obvious
reason for Google rescinding the internet permission is because it encourages apps to be
more advertising-friendly. Many apps do not require internet but construct their business
around showing ads. If the internet permission was reverted to being dangerous, then most
users would decline to grant it, specifically in cases where the reasons for requiring it were
not apparent to the user.

2.4. External Storage

Apps can additionally make use of external storage and store files on the device. The data
generated by the apps are independent from the apps themselves and persist after uninstalla-
tion. There is no security imposed on files that are saved to external storage. This makes it a
frequent target of attacks. All apps have the same view of the external storage. For an app to
access external storage it must first acquire permissions that allow reading and writing to the
external storage. In Android Oreo (8), the permissions are READ_EXTERNAL STORAGE
and WRITE_EXTERNAL_STORAGE respectively.

In the Android system, there are two types of external storage recognised. The first is
primary external storage: storage that comes with the device and can be accessed by apps
at any time. The other is secondary external storage, which is external to the device and can
be removed (i.e. SD cards). Access is subject to whether the external storage is available at
the time of access. In this project, we will focus on primary external and more specifically
the DCIM directory located in the external storage.

2.5. Side-Channel Attack

A side-channel attack on Android usually requires trying to obtain information through ex-
ploiting the underlying system. Instead of targeting the implementation of an app like more
conventional attacks. Android OS is a fully-operational system which provides support for
multiple apps on a single device. This comes with many challenges. Most of Android’s
Kernel is Linux-comprised, which means in a mobile context a lot of it would be considered
dangerous or unnecessary. Android through updates has slowly patched out vulnerabilities
that arise from these insecure channels. As was discussed previously, it was done by inte-
grating libraries/frameworks on top of the kernel to limit access to specific resources. In
Android Marshmallow (6), third-party apps were blocked from accessing real-time power,

5

memory and network usage information. These were primary targets for adversaries prehis-
torically [11]. Some shared channels remain open today and are necessary to allow apps to
function. The external storage being one of them. The operating system does not impose
any limitations on the external storage and apps are free to access it. However, this open
approach comes at a risk. We will leverage this to carry out our attack.

We propose a side-channel attack in this paper which leverage’s on several side-channels
found on the Android operating system, one of those being the external storage, and use
each in combination to predict whether or not the Instagram app is running on the fore-
ground and also predict when the user makes a post from their Instagram client. This paper
was heavily inspired by a previous work that proposed and implemented a side-channel at-
tack that works a similar way [12]. It involved time-stamping and geo-tagging a tweet sent
on a target device and then using the Twitter API to locate the exact tweet on Twitter
by using its location and time. It would be repeated several times until the user could be
identified. The malicious app was able to detect when the user tweeted from their device
by accessing the /proc/uid_stat/ <uid>/tep_rev public directory. The malicious app would
detect when Twitter was running in the foreground and listen for a packet with a certain
signature matching that of a tweet packet. In Android Marshmallow third-party apps were
blocked from having access to the /proc/uid_stat directory. As a result, a lot of legitimate
apps which require network usage statistics went out of business. This attack was proposed
before Android Marshmellow and no longer works. We try to propose a similar attack which
is structured the same way but works on all versions of Android.

The general structure of that attack is very similar to the attack we propose in this pa-
per. The attack can be broken into 3 main phases:

1. Phase ONE : Identify when a post is made on the Instagram client (by using several
side-channels).

2. Phase TWO : Detect how to link the local post event with an event that occurs on
the Instagram platform (utilising web crawlers).

3. Phase THREE : Obtain the identity of the user along with their posts and store it
on a remote server.

We will refer to our malicious app that will exploit these side-channels with the acronym
SCA. It will stand for SIDE-CHANNEL ATTACK. The app will run in the background as
a service.

3. Phase One - Detecting an Instagram Post

Figure 1: The stages involved in making a post on the Instagram app

Making a post on the Instagram client is relatively straight-forward. It involves a user fol-
lowing a sequence of steps. From fig 1, The user first chooses the media instance to post.
This may either be a video or an image and can either come from the gallery or the camera.
After selecting the media item, Instagram will open its editor and enable post-modifications
to be made to the media object. The next section involves defining additional tags to ac-
company the media item. That includes the description that makes the post on Instagram
easier to find. The user can also apply an extra location tag to the post as well. Unlike
Twitter, this is left up to the user to define themselves. Then after the user is satisfied with
their post they can finalise the process by pressing the share button on the top right.

During this process of creating a post on the Instagram app, various data leaks occur.
This will allow our SCA app to not only detect when Instagram is running on the fore-
ground but also detect when the user is making a post and what step in this process the
user is on during this procedure. The SCA app does this by combining the leaks from several
side-channels and making certain inferences from each.

3.1. The Channels FExploited

"Instagram is a free photo and video sharing app available on Apple iOS, Android and
Windows Phone” [13]. We will only focus on posts that are made through the camera
and not on those selected through the image gallery. This attack can also be generalized for
videos but we will only focus on photos to demonstrate the fundamentals of this attack.

Our SCA app is running in the background and listening for certain activities. For our SCA
app, there are two states (each represented as fields in the application) :

PASSIVE_STATE (initially equal to 1 for true) : This represents the state when the
SCA app is waiting for an Instagram post procedure to begin. This is the default state of
the SCA app.

ACTIVE STATE (initially equal to 0 for false) : This represents the state when the
user is believed to be currently posting on Instagram. Several side channels can be used in
combination to infer this event.

3.1.1. Overview

FOREGROUND
PROCESS

next share

[[orom]

O

Instagram camera Instagram photo Instagram
app editor description activity

BACKGROUND

DCIM Camera Directory PROCESS
listener ™ pa:ksl,;;tr;entgork burst
SCA app Hardware Camera scan() DCIM Instagram
(adversary) Timeline Usage IslBner | coccsoaciiooooiaaliadniiiizisiies Directory listener

ACTIVE_STATE -1 ACTIVE_STATE : 0
ACTIVE_STATE : 0 PASSIVE_STATE : 0 PASSIVE_STATE : 1
PASSIVE STATE @1

Figure 2: The Instagram post procedure represented as a transition diagram alongside the SCA activity
timeline. The listeners above the timeline represent what is triggered at certain parts of the process. What
is below the timeline represents the state changes that occur after each function is executed.

In the next section we will define the job of each cross-channel listener featured in our SCA
app.

3.1.2. Camera Directory Listener

So as was mentioned above, for a user to make an Instagram post, they must utilise the
device’s camera. The Instagram app implements its camera feature instead of utilising the
default camera app that can be accessed programmatically via intents. It uses Android’s
camera2 package which ”provides an interface to individual camera devices connected to an
Android device” [14]. On taking an image with the Instagram camera, the app automati-
cally stores a copy of the image within the DCIM camera directory located in public storage,
irrespective of if the post is later made or not. From the original Android documentation

8

of camera2 on how to a ”display a camera preview” and ”take pictures”, the code necessary
to build a camera is compiled into a sample app [14]. When this sample app is ran, and a
photo is taken the same thing occurs. The image is automatically stored within the DCIM
camera directory. It is not obvious locating the part in the code to disable this feature. The
developers designing this app might not have been aware of the leakage that occurs when a
user takes a image.

Our SCA app takes advantage of this leak by listening for changes to the DCIM cam-
era directory. It does this by setting a FileObserver on that directory as seen below in fig 3.
The state of the SCA app changes from a PASSIVE_STATE to an ACTIVE_STATE when
a new file is added.

From this point, the SCA app does not know with certainty if Instagram’s posting pro-
cess (as defined in fig 1) has begun. It still requires other side-channels to be employed to
achieve greater certainty. The file added to the camera directory may just be a photo taken
with the native camera app. In this case the SCA app must still detect it but must recognise
it as being unrelated to the Instagram app.

final File cameraDirectory = Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM);
final File dir = new File(cameraDirectory.getAbsolutePath() + “/Camera™);

dcimObserver = new FileObserver(dir.getPath()) {

@0verride
public void onEvent(int event, String file) {
if (PASSIVE_STATE == 1) {
if (event == FileObserver.CREATE && !file.equals(".probe™)) {
imagePreModified = new File(dir.getPath() + "/" + file);
PASSIVE_STATE = @;
ACTIVE_STATE = 1;
}
¥
¥
i

dcimObserver. starthatching();

Figure 3: Android code that implements a directory listener.

Additionally, the image leaked to the DCIM camera directory contains fine-grained geotag-
ging metadata. It is even present when the device has the geotag feature disabled on their
native camera app. This is another example of a side-channel attack. The malicious app
(SCA) can obtain fine-grained GPS data without requiring the permissions needed to get
it directly. We will later use this to generate possible location tags for which we can search
posts for.

3.1.8. Camera Activity Listener

Our malicious app (SCA) can detect when the camera of the device is in use and we can
do it without requiring the camera permission. We can do this by setting up two individual
callback functions that will be fired when the camera becomes available and unavailable.
We can obtain the CameraManager by getting the system’s camera service, and register
an AvailabilityCallback object by calling the registerAvailabilityCallback() method on that
CameraManager instance. The AvailabilityCallback object defines two methods :

onCameraUnavailable(String camerald) : This is triggered when the lock for the cam-
era(s) is obtained by a new process. More informally, it is when the camera goes from being
available to unavailable. For fig 1, the camera must be opened to make a post. When this
occurs, the camera lock is obtained by the Instagram app. We are more interested in the
case where the camera goes from being unavailable to available in this attack.

onCameraAvailable(String camerald) : This is triggered when the device lock for the
camera(s) is released by a process. More informally, it is when the camera goes from being
unavailable to available. This is triggered anytime the user takes an image with their cam-
era. This is used in conjunction with the storage listener outlined above to detect the first
stage of a post procedure on Instagram (fig 2). The DCIM camera directory listener will
always be fired before this CameraManager callback function. This callback is additionally
called every time the SCA app starts (since the camera is available at this point) so we must
check that the SCA app is in an ACTIVE_STATE before proceeding with the required next
step of the attack to account for this occurrence. We do not want anything to happen if the
app is in a PASSIVE_STATE and has not detected a new file in the DCIM directory.

It might not be apparent at this stage why we need the onCameraAvailable callback function
when it is enough to have the DCIM camera directory listener to detect when a photo is
taken. Google provides a feature which allows pictures of the user to be moved from their
DCIM camera directory to their Google Photo storage and back. We wanted a way to infer
with certainty that the files being added to the DCIM camera directory were ones that were
recently produced with the device’s camera. We needed both to be able to infer that.

10

3.1.4. Network Packet Burst Detector

We have so far covered how our SCA app detects when the post procedure begins. On
detection, this triggers the SCA scan process to start. This process can only begin when the
app is in an ACTIVE_STATE and will stop when the app goes back to a PASSIVE_STATE
(i.e. when the camera is reopened, or a timeout of inactivity occurs). This process involves
recording the amount of data being transmitted over the network per unit of time and infer-
ring when the image (of the post) is sent. As was mentioned above, apps were given access
to fine-grain network usage stats before Android Marshmallow (6). In later versions this was
blocked, and as an alternative Android introduced the TrafficStats class which provided gen-
eral network information. We utilise the static getTotalTxBytes() method which provides
us with the total bytes transferred from the device since the mobile was last booted (resets
to 0 after every reboot). Unlike the prior approach which allowed us to identify transmitted
packets from individual apps, we only have access to the total amount of bytes transmitted
by the device. On a scan, we continually invoke this method within a loop and subtract
each value with the previous to obtain the total byte change per second. This byte change
represents a packet that is transmitted over the network. If this packet follows a particular
size signature which is similar to that of the image, then we can extrapolate that the packet
must be related to the Instagram post procedure. When this occurs, the SCA app can infer
that the user is at the definition step (the 3rd stage in fig 1) of the post procedure.

We can not be sure that the packet detected is from the Instagram app yet. In cases
where there is a background process that is transmitting large amounts of data across the
network, this approach does not work well, but as we will see, it will have no impact on the
reliability of this attack.

We know from analysing the network activity that the image itself is sent between the post-
image modification step and the description step in the process. When the user is happy with
the modifications to the image and presses next, it is processed and sent over the network.
We analysed the packet signatures that are transmitted during a post procedure. To conduct
this experiment, we cleaned our test device from any background processes (apart from the
SCA app). We repeated the experiment 15 times using the same sized photo each time.

11

Megabytes (mh)

(=]

Pressthe post button Take mage Finalize post- Pubish the post
modifications

Steps in the post

Figure 4: A bar chart which outlines the megabytes of data transmitted over the network at each stage of
the post procedure.

We can see a TX burst occurring twice - first when the user finalises the modification of an
image and the second when the user completes their post. From a closer look, the second
burst is large enough (0.28 mb) to contain the metadata of the post but not large enough
to hold the image itself (1.03 mb). So it was conjectured that the first burst must represent
the event of the image being sent over the network.

3.1.5. DCIM Instagram directory listener

At this point, our SCA app can detect both when a post procedure starts and when the
description part of that process is reached. As was discussed previously, from the descrip-
tion page the user can apply several tags on a post. The user then completes the process by
clicking the share button which publishes it on the platform. When this occurs, the post’s
image is added to the DCIM Instagram directory automatically. Our SCA app detects this
by listening for new files within the DCIM Instagram directory. It sets a FileObserver to
point to the DCIM Instagram directory. The DCIM is a public directory and can be accessed
by any app with the EXTERNAL_STORAGE_READ permission.

This side-channel leak indicates to the SCA that the Instagram app is running on the
foreground and validates all side-channel inferences made prior. It can be possible to carry
out this single side-channel exploit alone and still be able to detect when a post is made
on Instagram. The problem with this approach would be that all files added to the DCIM
Instagram directory are not necessarily from regular posts made on the platform. Instagram

12

offers a story feature which allows users to share their stories amongst their followers for 24
hours. With this feature, the user has an option to save the images they post to their public
storage. So the app must distinguish between the two events. As we will later see, we must
be able to link a local event with a remote one, and stories are private and not accessible
through crawlers. Our SCA app can identify with certainty when the user is posting a
regular post.

4. Phase Two - Linking Local Activity with a Remote Event on Instagram

Next we discuss how we can best utilize what we have implemented in our SCA app to
identify the user.

4.1. Instagram Crawler

For our next part we will need a way of retrieving posts from Instagram. The Instagram
API, which traditionally allowed developers to search for posts, was restricted from the
beginning of 2018. It came after the Cambridge Analytica Scandel broke [15]. The changes
that came about as a result meant that access to the offical API was severely constrained.
The Instagram Graph API is now only available for businesses that provide formal proof of
their credentials.

We instead used an unofficial open source crawler for retrieving real-time Instagram data,
which works by exploiting known endpoints on Instagram. We went with a service provider
Phantombuster which hosts the crawler on their server and allows us to make crawl-requests
programmatically. We can define which hashtags or locations we are interested in, and it
would collect the data straight off Instagram and place it straight into the JSON file ready
for processing. The JSON key fields for each post crawled is represented below:

profileUrl (Profile URL of post author)

profileName (Username of post author (only if available))
ownerld (Instagram unique ID of post author)

postUrl (Instagram post URL)

description (Post description)

pubDate (Post publication date)

likeCount (Number of likes the post received)
commentCount (Number of comments the post received)
views (Number of views, if the post contains a video)
location (Where the photo was taken (only if available))
query (Hashtag (or location) that lead to the post)

postVideo (Link to raw video file, if available, can contains more than one link if

the data is available)

videoThumbnail (Link to raw video thumbnail, can contains more than one

link if the data is available)

postimage (Link to raw postimage, can contains more than one link if the data

is available)

Figure 5: The JSON keys for an Instagram post.

13

4.2. Data Study of The Various Approaches

It has been shown that the Instagram app leaks a lot of information. At this stage, we have
implemented the means of detecting when a post is made. We also have access to the image
that is associated with the post stored within the DCIM Instagram public directory. We
now require to utilise both to identify the user.

There are several approaches we can take to link a local event (the user making a post
on their device) with an event that occurs on Instagram. The process involves detecting
when a post is made on a device and then finding the equivalent post on Instagram. We
take a perceptual hash of the image contained within each post retrieved and compare it
with the perceptual hash of the image stored within the DCIM Instagram directory. If the
two are equivalent, then we have identified the post for which the user posted. We can then
determine the user by simply extracting their profielName and profileUrl out from the post.
If there are no matches, then the post has not been identified, and the crawling attempt was
unsuccessful. In this project, we must determine suitable queries that are optimal in finding
a particular post.

The response the crawler returns for a specific query depends on how Instagram decides
to serve the request. The crawler only works through known endpoints implemented by
Instagram. So the crawler cannot retrieve recent posts with no hashtag or location speci-
fied. Instagram uses powerful techniques of obfuscation to prevent effective data crawling.
It stripes the location field, the profileName field and other important fields from a post
one hour after it is posted and attributes it with a postID. We need the profileUrl and
profileName to link a post with a user. Since our attack will be triggered immediately after
the user makes a post, it does not affect our attack. A more destructive finding is that
Instagram only allows 22 posts to be returned where fields for location, profileName and
profileUrl exist. Even when the crawler is specified to return 500 posts for a particular
hashtag, it would only return 22 posts where location, ProfileName and ProfileUrl values
were available to access. We can counter this by repeating the same query to retrieve 22
new posts. However, as we will see, there is no guarantee that Instagram will provide us
with 22 different posts. We analysed the effect of this below.

We conducted an experiment which examined how easy it would be for our crawler to
find posts made on Instagram. We posted ten individual posts using ten different hashtags
of varying popularity. We additionally published four posts with four different locations.
The locations used are of varying granularity. All the crawls were made within 2 minutes of
making the original post.

14

Post tag (either
hashtag or
location)
#screen (1.6m
posts)
#technology
(10.2m posts)
#travel (398m
posts)

#thike (15.9m
posts)

#car (57.5m
posts)

#thurger (4.3m
posts)
#monalisa (1.3m
posts)
#tkeyboard (2.1m
posts)

#guitar (31m
posts)

#pig (4.3m posts)

London, United
Kingdom
Islington

Camden Market

United Kingdom

After 1 crawl:
Success rate

100% (found)

100% (found)

0% (not found)

100% (found)

100% (found)

100% (found)

100% (found)

100% (found)

100% (found)

100% (found)

100% (found)

100% (found)

100% (found)

0%

After 2 crawls:
Success rate

100% (2/2 found)
50% (1/2 found)
0%

100% (2/2 found)
100% (2/2 found)
100% (2/2 found)
100% (2/2 found)
100% (2/2 found)
100% (2/2 found)
100% (2/2 found)
50% (1/2 found)
100% (2/2 found)
100% (2/2 found)

0%

After 5 crawls:
Success rate

100% (5/5 found)
80% (4/5 found)
0%

100% (5/5 found)
100% (5/5 found)
100% (5/5 found)
100% (5/5 found)
100% (5/5 found)
100% (5/5 found)
100% (5/5 found)
20% (1/5 found)
100% (5/5 found)
100% (5/5 found)

0%

After 10 crawls:
Success rate

100% (10/10
found)
90% (9/10 found)

0%

100% (10/10
found)

100% (10/10
found)

100% (10/10
found)

100% (10/10
found)

100% (10/10
found)

100% (10/10
found)

100% (10/10
found)

10% (1/10 found)

100% (10/10
found)

100% (10/10
found)

0%

Figure 6: An experiment which involved creating a post with a particular tag (either a hashtag or location)
and trying to find the equivalent post on Instagram by crawling for that tag. Success rate is the percentage
of times the post was correctly identified. The queries for a particular tag were made consecutively instead
of in parallel.

There are two interesting observations. Whenever the crawler successfully identifies and
returns a post for a particular tag on its first attempt, the crawler is successful for the
next ten as well. This would indicate that the Instagram algorithm is predictable in how it
responds to queries. The second interesting observation is where the crawler did not work.
The crawler was not able to find the post with the #travel tag. #travel is a popular hash-
tag on Instagram. London, United Kingdom tag was found once and not found again after
and United Kingdom was not found at all. It would appear that Instagram puts a high
emphasis on its more recent posts. It happens that channels that have small amounts of
activity within them compared to more active ones produce a higher chance for our crawler
to find posts within them. Out of 140 total crawls 110 correctly identified the post. So it
would appear that the attack would still be successful as long as the post had at least one
uncommon hashtag or location attributed to it.

15

In this section, we carry out a data study on the three main approaches proposed and
examine how successful each is at locating the user’s post. Each approach categorises the
type of request that needs to be made by the crawler in order to make that link.

LocationalBasedSearch : We can try to identify the user’s post based on its location
tag. This approach was inspired by the Twitter side-channel attack discussed earlier. Insta-
gram, unlike Twitter, does not allow for the automatic geotagging of posts. The user in the
description page can attribute a location of their choice. This choice may not be correct.

We analysed the utility of this approach by examining the number of posts made on In-
stagram that included their location. If the user does not include a location, then we can
not use this approach to identify their post on Instagram. This study involved us crawling
the posts of 100 random active profiles.

Posts that specify a location (4574 post sample size)

m No Location = Location

Figure 7: An experiment which involved crawling the profiles of 100 random active users and recording the
number of posts which contained a location. There were a total of 4574 posts in this sample.

As can be demonstrated a total of 4574 posts have been examined. 56% of those include

a location. This coupled with our previous study would indicate that utilising the location
tag is an excellent approach for obtaining the identity of the user.

16

HashtagBasedSearch: This approach is based on predicting the possible hashtags as-
sociated with a post by analysing its image. We must assume that the user has left a
description consisting of one or more tags and those descriptively represent the image. In-
stagram allows a user to attribute a serious of tags to a post (i.e. #car #black). These
tags are represented as individual channels on the Instagram platform. We can crawl these
individual channels and try to identify our post from amongst them.

We will use the Google Vision API which will allow us to annotate images. To evaluate
the utility of this method, we must examine how well the computer vision algorithm works
at tagging images on Instagram. This can be measured by how well the labels produced
match up against the user-specified hashtags. In theory, our attack only requires one label
to match for our crawler to successfully identify a post. The more labels that match, the
higher the chance a post has of being found after several different queries.

We retrieved posts from 100 active users (spam accounts filtered). There were a total
of 4391 (image) posts. We had to implement our own algorithm which could analyse data
quickly. For each post retrieved, the image and description was extracted. We feed the
image through the Google Vision API, producing a collection of automatically generated
labels. We took the description of the post and extracted the hashtags from it. Then we
calculated the difference between the two and recorded the results. We did the same for
each post in the group. The data below represent the results of this experiment.

Figure 8: An experiment which involved crawling the profiles of 100 random active users and recording
the similarity between the user-specified hashtags and the computer-generated labels of the image. The
difference of each post in the group is recorded. There were a total of 4391 posts in this sample.

The Amount of Posts with at least one Descriptive Hashtag

posts with descriptive
tags
41%

posts with no
descriptive tag
59%

m posts with descriptive tags m posts with no descriptive tag

17

Posts by Amount of Discriptive Hashtags they Contain

3000
2500
2000
1500
1000
500 l
0 None Atleast 1 Atleast 2 At@t 3 Atleast 4 Atleast 5
W amount of posts 2670 1721 513 23 0 0

W amount of posts

Figure 9: An experiment which involved crawling the profiles of 100 random active users and recording
the similarity between the user-specified hashtags and the computer-generated labels of the image. The
difference of each post in the group is recorded. There were a total of 4391 posts in this sample.

41% of the posts have a description with at least one descriptive label associated with it. It
would indicate that this approach would be successful on average 4/10 times if executed.

PopularHashtagSearch : Instagram has comprised a list of their most common hash-
tags on their platform as seen below. This crude approach involves crawling posts based on
these hashtags. A lot of the popular hashtags (i.e. #instagood) are general and can apply
to a large number of post types. In theory, we only require a single matching term to be
attributed to a user’s post for our crawler to find it.

#love 12218
#instagood 704.0M
#photooftheday 478.6M
#fashion 456.5M
#beautiful 445 0M
#happy 413.8M
#cute 404.3M
#tbt 401.4M
#likedlike 393.9M

#followme 3743M

Figure 10: A list of the most common hashtags.

To examine the effectiveness of this approach we analysed the post of 100 random active
users and analysed how many of them contained a popular hashtag.

18

Posts that contain at least
One Popular Hashtag

= Posts that do not contain a popular hashtag = Posts that do contain a popular hashtag

Figure 11: An experiment which involved crawling the profiles of 100 random active users and recording the
number of posts from amongst them which contained a popular hashtag. There were a total of 4574 posts
in this sample.

1000
900

Post occurences (4574 posts)

800
700
600
500
400
300
200
100

0

SR &8

2
& o G <

& &S X

N > N

B & L

@ Ao
a &

&'

m Post occurences

Figure 12: An experiment which involved crawling the profiles of 100 random active users and recording
for each popular hashtag(in the top 10) the number of posts which reference it. There were a total of 4574
posts in this sample.

Fig 11 demonstrates that a significant number of posts contain at least one popular hashtag.
Fig 12 examines this idea further by establishing a commonality between how popular a
hashtag is and how frequent it comes up across random posts. But the problem identified
in fig 6 still stands. The popularity is what makes a post difficult to find. When the crawler
queries a popular tag like #instagood, the original post can no longer be retrieved due to
the sheer amount of activity occurring on that channel. #travel is an example of a popular
tag. The crawler was not able to find it after ten separate crawl instances, and #travel is
only 1/10th active as #instagood. This approach may be ideal for a social media platform
which does not constrain the way data is crawled.

19

4.3. Implementation

In this section we examine the rest of the attack and outline how it works in obtaining the
user’s identity:.

4.8.1. Server

The server-side part of this attack will carry out a lot of the heavy computation requirements
needed. The main components and their functions in this attack are defined below:

Google Functions - We have implemented two functions in typescript. Both are hosted
on the Google platform. A server-side function is triggered by (HTTP) request. This allows
our SCA app to make requests to our server and receive responses.

Google Vision - This allows us to generate labels for images.

Firebase Storage - This is used to store the images relating to a post for processing. It
will allow our server functions to access these images remotely.

Firestore - This is used to store information on different users. Once we identify a user,
we store their information on Firestore.

Phantombuster - Hosts the crawler that allows us to make crawl-requests programmati-
cally. We can define which hashtags or locations we are interested in, and it would collect
the data straight off Instagram and place it straight into the JSON file ready for process-
ing.

We have described in full how the SCA app can detect when a user makes a post. The next
part of the attack is locating that specific post on Instagram. We have implemented both
LocationBasedSearching and HashtagBasedSearching approaches in our attack. We execute
both in parallel to increase the chances of finding a post.

For LocationBasedSearching we must infer a set of location tags that the user might use. We
must do it without requiring any additional permissions. For the HashtagBased Approach
we try to estimate what hashtags have been used by obtaining the generated labels associ-
ated with the image. We then compile the labels and the locations into a batch. We make
individual crawl requests for each term in the batch and we do it in parallel. Only one term
from the batch needs to result in the post being identified. The SCA app must prepare the
batch with terms before the crawling can begin. Below are the steps involved in preparing
the batch of terms.

20

4.3.2. Preparation of the Search Terms

1. The SCA app on detecting a post, first examines if the user making the post has not been
identified by the app previously. It makes a request to Firestore to examine if there is a
remote directory with a device id matching the current device. If no matches are found then
the attack continues. The SCA app is able to generate a device id from the device’s hardware
primitives and associate it with a particular user. It does not require any permissions to
obtain and is immutable in nature.
id = "+

Build.BOARD.length() % 1@ + Build.BRAND.length() % 10 +

Build.CPU ABI.length() % 10 + Build.DEVICE.length() % 10 +

Build.DISPLAY.length() % 10 + Build.HOST.length() % 10 +

Build.ID.length() % 1@ + Build.MANUFACTURER.length() % 1@ +

Build.MODEL.length() % 1@ + Build.PRODUCT.length() % 10 +

Build.TAGS.length() % 1@ + Build.TYPE.length() % 18 +
Build.USER.length() % 1@; //13 digits

Figure 13: How the SCA app generates a device ID for a particular user.

2 (HashtagBasedSearching). The next part involves generating labels for a given image. As
we explained in phase one, the pre-modified image of the post is stored in the DCIM camera
directory. The SCA app sends this image to Firestore. Our Google Function method filter()
is called from within the app with the url of the image being passed as a parameter. Within
the filter() method we feed the url into the Google Vision API. It produces a collection of
object, landmark, logo and web similarity-based labels for a given image and returns that
data back to the Android SCA app.

2 (LocationBasedSearching). This part involves generating possible locations. This app uses
two approaches. The first involves analysing the metadata of the photo stored within the
DCIM camera directory. In phase one, this was discussed as occurring automatically when
the user takes a photo with their Instagram client. This photo contains the location where
the image was taken. It is defined in the form of longitude and latitude coordinates which can
be retrieved through Android’s ExifInterface. We utilise Geocode to reverse the coordinates
to a particular location. The method call getFromLocation(lang, long, resultsSize) returns
an array of addresses. For each address returned, we extract both its country and its feature
name and add both to the batch (if not present).

The second approach used involves analysing the image itself. We can use machine learning
techniques to determine if the content of the image is a landmark or location. If a famous
landmark or area is identified, then we can construct an address.

3. Once we have the labels and locations, we send the post-modified image located in the
DCIM Instagram directory to Firebase storage and obtain the resulting url. We are ready
to make requests to our crawler.

21

4.3.3. Finding the Post

Back-End

7. Display the user's data

on the front-end website

e

Google Functions

filter()

Google /

Vision
API

1. Send Image

From DCIM
directory SCA APP

U R

2. Generate a
a collection of

terms

searchSingle()

B

&
=]
6. Compare posts with

3. Call

searchSingle()
for each term ‘

the image

4. Call the Instagram
Crawler with the term
provided

5. Return a collection of posts

l Instagram
«m» Crawler

]

Figure 14: An overview of the components involved.

searchSingle() is a callable HTTP method. This method is responsible for making requests

to the crawler. The parameters:

e tag - the tag is the parameter term that will define the request that needs to be made

to the crawler. It can either be a hashtag(label) or a location.

e id - the device ID. On a positive match, it will be used to add a user entry into

Firestore.

e url - the URL of the image that will be searched for from amongst the crawled posts.

e isLocation - if marked as true the tag is left how it is, but if false the tag is turned
into a hashtag, i.e. Black is converted to #black.

e searchOccurences - Marks the number of unsuccessful attempts so far (additional op-

timisation)

The SCA app makes a searchSingle() request for every term identified, whether location or
label. It goes through each item in the batch, and it makes a searchSingle() call. All calls
are done in parallel, and it only requires one seachSingle() call to be successful at identifying

the post for the attack to work.

22

How searchSingle() works:

tag : "example”

if isLocation then
retum tag

The posts
Tne returned
f\ma%? from
rom the
Dcim Instagram
directory fm—

1. produce a

perceptual hash ‘AB32DSDSA"
of the images

I
-
&
B
8
[}
@
(=]
[}
®

2. identify if there <:::>
is a maich l
3. refrieve the profileUrl

from the post that
matches and crawl the

users profile l

Firestore
4. store the users data in

the Firestore database. =

Figure 15: An overview of how the searchSingle() method works.

1. It first identifies whether the tag provided is a location from the isLocation parameter.
If the tag is not a location (a label), then we convert it to hashtag form.

2. It generates the perceptual hash of the image that was passed as a parameter (url). This
represents the image we are looking for.

3. It makes an HTTP request to the Instagram crawler with the tag contained within the
request. If the search was successful it would return a collection of posts in JSON format.

4. It iterates through each post, generating the perceptual hash for each by using the postUrl
key to download the image locally.

5. It compares the perceptual hashes of each post with the image hash defined in step 2. If
there is a match, then the two images are equivalent, and the post has been found. That
post moves on to the next stage.

6. The profileUrl is extracted out from the post.

7. All of the data is crawled from the user’s profile and sent to Firestore. The algorithm
then terminates.

23

8. If there are no matches, then the algorithm tries again with the same term. The searchOc-
curences parameter measures the number of runs that have been attempted. The algorithm
currently only limits two tries before terminating. The term must also be a single word for
a re-run to occur.

4.4. Displaying the Data

We have implemented a way of displaying data. The website displays the users data in
readable format. The user ID is passed as a URL parameter to identify the user’s data on
Firestore.

5. Evaluation

In this paper we have a produced a way of obtaining the user’s identity through several side-
channels and various technologies and approaches. We can measure the reliability of this
attack by examining how many posts on average must occur before the user can be identified.
Due to the constraints imposed on fetching data from Instagram, there is no guarantee that
the crawler will locate a post on Instagram. It might require several attempts before this is
achieved. There is also no guarantee that the user has allocated any hashtags or locations
to their image. It would be impossible in these cases for our crawler to find these posts. But
these type of posts only represent a tiny number of posts on Instagram. Out of the 4574
posts that were examined, only 0.01% of them did not contain a location nor a hashtag.

The experiment involved simulating five different users on Instagram. We examined the
number of attempts (the number of posts needed to be published) before the identity of the
user was determined. The experiment involved re-posting the user’s posts back to back. The
SCA app only detects posts for which a photo was taken for, and this involves utilising the
camera. To trigger the SCA procedure we took photos of the images used. We attributed
the same hashtags and provided the same location. The five users that were chosen were
randomly selected from amongst a sample of 100 users.

User Amount of Amount of | The number | The matching term | Amount of
posts posts with of matched on sUCcess posts till a
detected on | no match terms that match (user
device (fail) fail is identified)

1% 100% 1 0 #tbuckinghampalace | 2
2nd 100% 6 1 (#flower) #kiss 7
3 100% 0 0 #vehicle 1
4t 100% 0% N/A N/A N/A
5t 100% 3 1 (#style) #party 4

Figure 16: An experiment which simulated 5 different users found on the Instagram platform on a device
with the SCA app running in the background.

24

From the data, the crawler can locate the post made whenever a match occurs. The number
of matched terms that fail were reasonably low. The problem arises when the user-defined
description is not descriptive enough. Only a minority of posts have a tag that can be
identified by its media content. For the fourth user, no matches were made before the tenth
post. The user was attributing context-specific labels to their posts, and a large section of
their profile consisted of self-portraits.

On average the user was identified after 3.5 posts. This can be improved if a more informed
and robust approach was taken to attributing labels. More extensive analysis of how users
make posts on Instagram would need to occur to form a greater understanding of how
to assign possible terms. The attack currently assumes that the user only attributes tags
based on how accurately it describes the image content. We do not consider the context
surrounding a post.

A case might arise where the user might be using a private account. When their account
is private, only people they approve are able to view their posts. These posts can never be
retrieved by the crawler. Instagram has not released any official statistics.

6. Protecting From This Attack

In this section, we discuss some of the ways Android can thwart this type of attack. This
will involve blocking and restricting certain channels on the Android operating system.

6.1. Protecting From Instagram Public Directory Leakage

To stop this attack, It would be enough to block the Instagram public directory from being
accessed by other apps. The SCA app would not have access to the image that was posted
on Instagram, and could not establish a link with a remote post on the Instagram platform.
This would involve Android introducing isolated containers within the external storage. In
Android Q (9), a similar approach is taken. Apps can specify access to their the external
storage partitions. For Instagram this approach would involve storing images in its sandbox.
This would be in contrast to storing it in the DCIM public directory. However, these isolated
sandboxes do not exist independently from the app. When the app is uninstalled from the
device, its partition is automatically cleaned.

If this is adopted, it might restrict apps that require photo directories to function. Photo
editing apps command a large market on the Play Store, and all of them require the DCIM
directory. Any updates made to the Android OS must strike the right balance between the
functionality it offers and the security it provides the overall system with.

An alternative approach is to attribute ownership to an image and define how apps can
access that image. This will introduce a more fine-grained approach to external storage
which takes into account the context of the file. When the app writes a file to memory, it
can specify the permission context of that file. The permission context can be categorised as

25

a user-defined set of permissions on the Android system. A third-party app trying to access
that file must have obtained all permissions within that set. Instagram can utilise this
feature by associating a permission context {READ_EXTERNAL_STORAGE, CAMERA}
with the images that are added to the DCIM Instagram directory. It will allow access from
photo editing apps that might require those files whilst preventing access from the SCA app.
The SCA app does not have the CAMERA permission required to access the file.

Another approach would be for Android to close public storage listeners that are trying to
run in the background. The malicious app might find alternative ways of detecting when
a change has been made to the external storage that work just as effectively. The Android
system must be able to detect those occurrencess and close them.

6.2. Protecting From Camera Activity Leakage

The camera availability listener can be blocked by putting the method registerAvailability-
Callback() of the CameraManager class behind a permission wall. No third-party app should
be able to detect when a camera is available if they do not have the permissions necessary
to use the hardware camera.

6.3. Protecting From Camera Public Directory Leakage

There are some use cases to why a third party app might need the DCIM camera directory
to store photos. However, even in those cases, it should not automatically store photos
without the user’s consent. The user should explicitly define whether a photo should be
saved to their public directory. In the case of Instagram a photo should only be stored to
the DCIM camera directory if the user later shares the post for which the picture was taken
for.

6.4. Protecting From GPS Leakage From Image Metadata

No third-party app should have the ability of geotagging images that are stored within the
external storage. The geotagging information should be removed from all images deposited
to the public directory. This information should not be available to any apps that have
access to that directory.

7. Future Work

7.1. Eztending this Attack

The attack in its current state links a user to a specific device. This grants access to all the
data contained within that user’s profile along with the posts they have posted. The posts
themselves contain useful information that can allow us to derive reliable inferences. We
can utilise various NLP approaches to carry out sentiment analysis on that data. Sentiment

26

analysis is the automated process of associating content with a particular mood. We can
analyse a range of posts belonging to a user and identify the characteristics it conveys.

7.2. Generalising this Attack for other Media-sharing Apps

We can generalise the side-channel attack proposed to work for other media-sharing apps, like
Tumblr or Pinterest. These platforms utilise hashtags in the same way Instagram does. We
can detect when a post has been made by exploiting the same combination of side-channels.
We also have access to the official API which will allow us to crawl posts effectively. We
can compile several of these attacks across different platforms into one fully functioning

app.

8. Conclusion

Over time Android has constricted specific channels on their operating system. It was
primarily done to limit the number of leaks that occur. Some channels must remain open,
and play a significant role in a multi-app operating system like Android. We have shown
how we can exploit these channels to carry out a attack that detects when a user makes a
post. We also built on it by developing an attack which can obtain the user’s identity by
linking the local event (user making a post on a device) with a remote event (identifying
the equivalent post) on Instagram. Even with the constrictions imposed on the crawler by
Instagram, the attack still remains fairly reliable. There are cases where the attack does not
work well but those cases can be reduced with more dynamic approaches. We can generalise
this attack for other media-sharing apps that have more open APIs. It would be easier in
these cases to obtain the identity of the user. We also have discussed some possible ways of
thwarting against this attack.

References

[1] "android m will never ask users for permission to use the internet, and that’s probably
okay”, https://www.gdatasoftware.com/blog/2018,/11/31255-cyber-attacks-on-android-devices-on-the-
rise, accessed: 30-04-2019.

[2] J.Levin, Android Internals: A Confectioner’s Cookbook Volume I: The Power User’s View, 1st Edition,
Technologeeks.com, 2015.

[3] K. Yaghmour, Embedded Android, 1st Edition, O’Reilly, 2013.

[4] N. Elenkov, Android Security Internals : An In-Depth Guide to Android’s Security Architecture, 1st
Edition, Cox publishing, 2015.

[5] A. et al., "sok: Lessons learned from android security research for appified software platforms”, Tech.
rep., IEEE Symposium on Security and Privacy (2016).

[6] ”application sandbox”, https://source.android.com/security /app-sandbox, accessed: 28-04-2019.

[7] ”permissions overview”, https://developer.android.com/guide/topics/permissions/overview, accessed:
23-04-2019.

[8] ”global market share held by the leading smartphone operating systems in sales to end users from 1st
quarter 2009 to 2nd quarter 2018 7, https://www.statista.com/statistics /266136 /global-market-share-
held-by-smartphone-operating-systems/, accessed: 30-04-2019.

27

[9]

[10]

A. H. S. E. D. W. Primal Wijesekera, Arjun Baokar, K. Beznosov, ”android permissions remystified:
A field study on contextual integrity ”, Tech. rep. (2015).

”cyber attacks on android devices on the rise”, https://www.androidpolice.com/2015/06,/06/android-
m-will-never-ask-users-for-permission-to-use-the-internet-and-thats-probably-okay/, accessed: 30-04-
2019.

e. a. Michalevsky, Yan, ”powerspy: Location tracking using mobile device power analysis.”, Tech. rep.,
USENIX Security Symposium (2015).

e. a. Zhou, Xiaoyong, "identity, location, disease and more: Inferring your secrets from android public
resources.” , Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security.
ACM.

”what is instagram?”, https://help.instagram.com/424737657584573, accessed: 30-04-2019.

”android camera2basic sample”, https://github.com/googlesamples/android-Camera2Basic, accessed:
30-04-2019.

7instagram is limiting how much data some developers can collect from its api and cutting
off others altogether”, https://www.vox.com/2018/4/2/17189512/instagram-api-facebook-cambridge-
analytica, accessed: 19-04-2019.

28

