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Abstract

Technology has advanced considerably in a short period. The number of students deciding to adopt

a career in technology has increased with the number of new enrollments in a technology-related

course in the US estimated to eclipse 50000 by 2020 (CRA [2018]). E-learning applications

are becoming increasingly necessary. Automata theory introduces a collection of machines that

help to illustrate fundamental computational concepts that are important for students to grasp.

These machines are taught to students in abstract ways, and often students are not provided with

opportunities to interact with these conceptual devices. In this paper, we introduce an e-learning

application that enables students to interact with these tools meaningfully. The application itself

tries to utilise well-established pedagogy principles and accurately incorporate and represent

the main ideas covered in the automata literature. We carried out a systematic review of the

application and its effectiveness at achieving the central objectives illustrated in this paper. The

tool definitively outperforms alternative applications. Most participants in our study strongly

agreed that the application provides the necessary working features to support the student. They

also noted that there is an effective use of illustrations and animations throughout the application.

Unanimously, students believed that learners would benefit from integrating this tool into a study

program. In this paper, we will discuss the implications of our findings and outline the process of

constructing this pedagogical tool.
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Chapter 1

Introduction

The need to create informative applications to portray abstract computational theories has in-

creased. The number of students who take computer science has risen each year (Figure 1.1).

Such computational tools are a necessary component for any technology-related course. These

devices are covered in a number of university syllabuses and reappear in many areas of literature.

Figure 1.1: The trend of new enrollments into computer science (or related) fields in the United

States. CRA [2018]

Automata theory is the study of abstract machines and the computational problems that can

be recognised by employing them. Before the 1990s, automata theory was considered as an

active area of scientific research. It was targeted towards graduate students and taught as a

graduate-level subject. Today, the volume of activity has significantly decreased, and little moti-

vation is shown to the possibility of new research being carried out within the field. It has evolved

to become a static component of the undergraduate curriculum. Computer science, in its current

iteration, has become more vocational-orientated. However, there are tools conveyed in automata
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theory that are still relevant today, with many newer technologies incorporating them.

For instance, a well-established approach to implementing a standard compiler is to combine

several automata machines. Finite automata (FA) is ideal for lexical analysis - dividing input

into recognisable independent entities. The pushdown automata (PDA) is suitable for syntax

analysis when examining the relationship amongst entities. Due to the pushdown stack, the push-

down automaton is able to retain state - a necessary property required for verifying relationships

amongst entities. These machines can be used in combination to execute the different compilation

stages. The alternative approach would be to implement the compiler from scratch. However, if a

language has a wide-ranging lexicon, this approach is not fast or scalable. Using these tools in

combination to solve specific use cases is an effective technique. These tools can provide both

reliable (i.e. easily testable) and efficient strategies for solving decision problems.

Automata theory introduces a collection of machines that help to illustrate fundamental computa-

tional concepts that are important for students to grasp. These machines are taught to students

in abstract ways, and often students are not presented with opportunities to interact with these

conceptual devices. In this paper, we introduce an e-learning application that will enable students

to interact with these mechanisms directly and meaningfully.

As we will discuss, several applications propose to simulate the same conceptual machines. They

each carry flaws that negatively impact the educational effectiveness and user engagement of the

application. The motivation from this project comes in trying to produce a tool that effectively

utilises well-established educational and HCI principles. A design that fully encapsulates the

automata theory concepts and enables students to interact meaningfully with the system. In

this paper, we will formalise the different stages of development to show how features were

chosen and integrated into the system.
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Chapter 2

Background

In this section, we will comprehensively cover all relevant underlying issues that went into

developing this educational application and then go on to look at some of the alternatives that

currently exist.

2.1 E-Learning Applications

It remains important that fundamental educational principles are considered when designing this

system. A number of works have been written on the subject of educational technology. Mental

development has long believed to be improved through the use of games (Rieber [1996]). This

application will be presented as a type of game that the user can directly interact with. Such

systems must provide learners with sufficient motivation to seek knowledge themselves. One of

the educational theories articulates that learning should be both self-motivated and rewarding

Malone [1981]. This overlaps with fundamental beliefs in game theory. Thomas W. Malone

analysed some of the main factors that contributed to making games engaging. Challenges in

the form of levels, unpredictable outcomes and fantasy were found to be the main determinants.

Fantasy being "mental images of things not present to the senses or within the experience of

the person involved" Malone [1981]. Engagement is achieved from two main functions in this

application. The first comes from offering the user challenges. These challenges will analyse the

user’s ability to design machine instances and try to engage the user on a mental level. Mastery

goals (i.e. challenges that have concrete objectives) have been showed to foster engagement and

confidence amongst students compared to performance goals (i.e. challenges that utilise a scoring

scheme) Ames and Archer [1988]. The other comes from allowing the user unrestricted access to

these abstract tools. The freedom and ability to customise and configure machines allow the user

to more effectively reason with these concepts.
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Another key goal of an e-learning application is to communicate effectively the importance of the

topics being conveyed. An example of achieving this would be to include real-world examples

that build on these abstract ideas. There must exist a motivational justification for using this tool.

Quinn argued that constructing a motivation is important for any educational application Quinn

[1994]. This project’s primary goal is to propose an application that can be incorporated and used

in conjunction with the teaching of these concepts at university. The theories demonstrated must

be well-established and general in scope. The notations must be natural, easy to express and,

above all, accurate.

2.2 Objectives

The central objective is to engineer a system that is invisible to the user’s experience. Too many

buttons or obscure features will have negative consequences on user experience. In the paper A

Study of Educational Simulations Part I - Engagement and Learning, several characteristics have

been identified to encourage student learning. We will adjust this list only to contain components

specific to this project.

An Engaging Approach: The application will encourage engagement through both

interaction and exploration. As was discussed before, the more interactive an ed-

ucation application is, the easier it is to learn with (D. Bransford [2000]). The

application will offer a series of challenges with varying difficulty. They will test

the user’s crafting ability. Neal [1990] mentions that goal formation is a motivating

factor in any educational game. The user will be able to create their own machines or

modify pre-existing machines and then simulate input on those machines. This will

include the ability to visualise and control the execution of an input. For instance,

the user will be able to go back or forward in the execution. For non-deterministic

machines, where two or more transitions can be explored from a configuration, the

user should be able to choose. This could be in the form of a dialogue box that

allows the user to determine the next transition.

Constructivist In Nature: Von Glasersfeld [2012] stated that to solve a puzzle,

an individual must contextualise the puzzle’s internal structure first. They must be

familiar with the obstacles that interfere with the progress towards a goal. Once a

problem can be visualised, the learner has the capacity to come to a solution. The

fact that a solution can continually be tweaked and tested serves as an excellent exer-

cise for the learner. The student can comprehend how a solution was derived. If the

user can be made to appreciate the process of designing machines, then the user will

be more engaged and have an easier time understanding the underlying ideas. There

is a problem-solving aspect of developing machines to solve certain challenges. In
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order to create machines confidently, the user must be comfortable with the ideas

presented. In instances where concepts and notions are accepted universally, e.g.

using the epsilon symbol to depict jumping transitions, the specification must adhere

to those standards. The application must build on established knowledge of these

theories so that the student can establish a strong familiarity with the tool. There

must also be a number of additional resources to help students understand these

concepts more quickly. For instance, a system that includes a set of well-known

example machines with which the user can load and interact would be beneficial to

the student.

The utilisation of visualisation: Through animation and practical illustration, we

will simplify these conceptual ideas into easy-to-understand representations. The the-

oretical machines will be portrayed as graphical objects that can change dynamically.

This encourages students to understand these machines as if they were physical

devices operating in the real world. The components specific to each automata

machine must be visually represented, e.g. the push-down stack for a push-down

automaton must be represented as a standard visual stack. The user must be able to

visualise what the machine is doing at each step of the execution. The state of the

device must dynamically change to match the current configuration during execution.

The user must have control and be allowed to go forwards and backwards in the

execution. The user should be presented with effective manipulation and definition

capabilities. Exploration will be motivated through the use of visualisation and

animation.

Usability is the most important aspect of the system from the viewpoint of the intended actor who

needs to use the tool. The user must be able to reason effectively with the processes contained

within it. Rigorous planning must be taken to avoid a counterproductive overload of the sensory

channels.

An elegant interface which utilises well-known HCI principles is additionally important. The

application must be intuitive to use. Failure in achieving this would nullify the entire system.

Also, additional features that make the system more versatile should be introduced. Only features

that would significantly improve the user experience should be taken into account. In this regard,

we make a distinction between useful features and gimmicks. A useful feature is one that works

to increase the effectiveness of the core features found in this application. For instance, a feature

that allows users to save machines to memory would be characterised as useful. It provides

an incentive for students to return to the application by allowing them to start from a previous

session. The interest comes in trying to limit the number of gimmicks. We want to keep the tool

simple enough to allow learners to recognise the main ideas effectively.
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2.3 Competitors

Figure 2.1: The alternative applications [Patel, White, Burch, Dickerson]
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There are a handful of pre-existing tools (Figure 2.1) that perform comparable features to the

one being proposed. We will explore the main ones and examine their performance against our

learning objectives.

jFast (Figure 2.2) exhibits the capabilities to simulate the primary devices. However, the execution

process is not represented. There is no step-by-step demonstration of the execution process. The

application should not be a system that only can determine recognisability. It should be one that

also illustrates how the output is reached. This will include showing the state of each component

at different stages of the execution. As previously stated a lot of the ideas around computation

are demonstrated through the execution process, so it remains essential for this procedure to be

represented.

Figure 2.2: An FA machine instance modelled using jFast (Patel [2018])

Kyle Dickerson’s automaton simulator in its current iteration can only simulate an FA or PDA.

The exclusion of the Turing machine (TM) is not ideal. TMs can be utilised to communicate

computational ideas that might not be apparent in other machines — for instance, illustrating

the impacts of its bi-directional head on computation can be used to introduce the concept of

memory-based computation to the user.

For Cburch’s automaton simulator, only a deterministic pushdown automaton can be represented.

For all machines that can be constructed using the application, the input alphabet (and stack

alphabet) is automatically configured as having four elements (a,b,c,d). An illustration of this is

seen in Figure 2.3. This restriction limits the user’s ability to build complicated machines. The

tools deployed must be versatile to encourage user exploration.
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Figure 2.3: Setting the input element of an FA transition in Cburch Automata Simulator. (Burch

[2001])

The graphical definition procedure for each application is complicated and unintuitive. The user

should be able to create and modify machines easily. This is a requirement for this application

to be useful. Additionally, there is an insufficient number of features that exist to promote

learning. As a result, these systems do not feel like traditional e-learning tools.

2.3.1 A closer look at JFLAP

JFLAP (Figure 2.4) is the most established alternative. It is an open-source application that can

simulate many of the abstract tools found in computational theory. These include L-systems and

Grammars. For intensive purposes, we only need to consider the features that will overlap with

the application being proposed. The user is able to simulate a number of different machines. The

scope of JFLAP is broad, and there is no particular focus given to any tool. JFLAP provides the

necessary functionality to create machines and simulate input on those machines.

Figure 2.4: An NFA machine instance modelled using Jflap (Patel [2018])
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JFLAP’s lack of auxiliary features is problematic. There are no incorporated example machines

that a user can load and interact with. Examples are an effective way for students to familiarise

themselves with the system.

An interactive walkthrough of the simulation tool would be the best way of introducing a system

to a new user. Without adequate instructions, many of the proposed features would overwhelm

the user and limit the learning effectiveness of the overall system. The JFLAP website provides

external documentation that describes how to utilise these tools. The documentation is not

adequate and exists independently from the application.

The abstract machines must have a coherent and established style of operating to encourage user

exploration. A significant part of this comes from establishing well-defined notations. There is no

theoretical justification for many of the notations featured in JFLAP, and a lot of the symbols are

not automatically evident to the user. For instance, in JFLAP, the epsilon transition is represented

with the lambda symbol rather than an epsilon symbol.

A useful e-learning tool must enable the user to visualise each step of the execution. JFLAP does

not represent the execution in any intuitive way. For example, the input tape, a component shared

across all machines, is not represented as a visual component during execution. Additionally, It is

not clear what transition is chosen for a particular step in the execution. The user can infer from

the results, but this becomes challenging for complicated machines. The dynamic representation

of each configuration in the execution and the changes that occur must be illustrated through

expressive animation and precise illustration. A significant element of this e-learning system is

visualisation, and it has been identified as being essential to helping convey abstract ideas.

Figure 2.5: JFLAP’s FA construction toolbar
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JFLAP constrains the user to define machines graphically (Figure 2.5), i.e. dragging and dropping

components (i.e. states and transitions) on a region. This process is tedious for the user. This is

true for machines that operate with a high number of transitions. Another issue with this approach

is that it distances the user from well-established ideas that persist in the automata literature.

There already exists a formalisation procedure to define machines. Every automata machine has

a prescribed definition that describes the components contained within them. A better approach

would see the student explicitly define their machines, describing each component individually.

This approach helps the user to become more familiarised with the components involved, and the

role each plays in the machine.

2.3.2 Summary

In summary, every application provides the essential ability to simulate abstract machines.

However, each fails at being a coherent system that a user can benefit from. The ambiguous

representations, the lack of auxiliary features and the disconnect from key theoretical ideas are all

limitations that play a significant role in making these applications ineffective. They are presented

as operational tools rather than educational programs. There are few opportunities for freely

analyzing, assessing and hypothesizing computational ideas. JFLAP is the most established

alternative with a comprehensive list of features. The other options fail by excluding basic

features or imposing unnecessary restrictions on the user. However, JFLAP does not feel like

a regular educational program. The representations are confusing or lacking, and the system’s

overall educational effectiveness has been reduced by the inclusion of too many features - the

effect of which leads to cognitive overload. There should be a strict focus on only representing

a tiny handful of machines. They must be expressed effectively, demonstrating the underlying

ideas for each.
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Chapter 3

Design and Implementation

To produce an automata simulator which can be incorporated within a university context and

successfully be used by students to learn with, the user interface must not be imposing, and

certain features must be included.

In this section, we will outline these features. We will also examine the possible uses of this

application.

The theories integrated into this system come primarily from the ideas covered in the textbook

Introduction To Theory Of Computation Sipser [1996]. It is a well-established book that has been

referenced in many educational programs and cited over 3800 times. The paper that inspired a lot

of the design decisions is A Study of Educational Simulations Part I - Engagement and Learning

Adams et al. [2008]. We additionally used the data study Adams et al. [2008] to inform the design

process. The study involved 200 individual interviews with 89 participating students. It reviewed

a set of tools (PHET) that were targeted to students in a science-related field. These tools are

similar in nature to the application being proposed. The underlying ideas are just as abstract.

3.1 Machine Selection

As was discussed, automata theory is a vast subject and covers a range of computational devices.

Several machines can be simulated in JFLAP. JFLAP, in including too many machines, has

reduced its overall effectiveness as an e-learning platform. A design choice has to be made

as to what machines should be simulated. There must be an inherent and obvious relationship

to warrant devices being included together. The user must be able to extrapolate connections

efficiently across them.
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The computational machines to incorporate:

• Finite Automata (FA)

• Pushdown Automata (PDA)

• Turing Machine (TM)

Automata theory is the study of abstract machines and the computational problems that can be

recognised by employing them. Within this context, a problem is categorised as a language, a

collection of words collectively defined by a distinct pattern. A machine recognises a language

when there is a machine instance that can identify the words that are contained within that

language. From Figure 3.1, the different devices are represented within a Venn diagram. The

nesting represents the variation of power. In this context, power represents the number of

languages that an automata machine can recognise. The power differential that exists between

the various devices serves to highlight the fundamental computational ideas they present. For

instance, why introducing a head that can move in both directions, a feature only found in

Turing machines, can allow for a machine to have more power compared to one where the head

can only move in one direction. An effective demonstration of these machines can encourage

students to discover ideas independently. Automata machines themselves are tools that are used

to illustrate computational concepts. That is the primary reason for their inclusion in a majority

of undergraduate curriculums.

Figure 3.1: The class of automata machines.



CHAPTER 3. DESIGN AND IMPLEMENTATION 13

3.2 Technology Selection

The choice of the environment plays a key role in deciding how this system is used. A desktop

solution was identified as being the most optimal. It will enable the application to operate within

a school context without any restriction.

Advantages

+ Does not require internet

+ The application can be ported easily across devices

+ Much faster than the equivalent web application

We also analysed mobile and web solutions and examined their limitations.

Mobile Native Approach

Advantages

+ Open application market (readily accessible)

+ Much faster than an equivalent web application

+ Only requires internet at installation-time (offline use)

+ More people have mobile phones then computers or laptops (pew [2019])

The mobile native approach was identified as not being practical. Many of the ideas communicated

in this application are done through visualisation. Smartphone display sizes are often inadequate,

and representing these simulations on small layouts will reduce the overall effectiveness of the

visuals.

Additionally, a lot of the features in this application require user input. For example, building a

machine requires the user to explicitly define the states and transitions (i.e. via keyboard input).

Presenting this type of feature within a mobile environment would come with several challenges.

The mechanism for providing user input on smartphones is not ideal (Page [2013]).

Another challenge comes in there being no agreed way of compiling apps on smartphones. The

process entirely depends on the vendor of the operating system. The Android operating system

requires apps to be written in Java and IOS requires them to be written in Swift. The application

would need to be implemented on both.
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Web Approach

Advantages

+ No hardware or software prerequisites

+ Only one version of the application is available

+ Can provide support for mobiles devices

+ No downloads required

An internet connection is necessary to launch this application on a browser. This would stop

offline use of the program, and since the application itself requires no internet, the availability of

the system would be hindered.

Additionally, a web application is slower than an equivalent desktop application. This becomes

primarily true for systems that comprise of many components that operate on communication. As

a result, the development process would become more challenging.

APIs and Libraries

In developing this application, Java was an ideal choice. It contains a range of well-written

libraries to satisfy the requirements found in this project. A program written in Java can also be

made to run on multiple different operating systems.

JavaFX is deployed in this project as well. JavaFX is an API which consolidates both CSS and

XML with Java to allow developers to create high-level GUIs. It introduces a collection of form

elements, that provide the necessary form-handing capabilities needed to define machines. It also

provides the vital drawing mechanisms needed to represent machines graphically.

We did not incorporate many libraries. This was done deliberately to keep the application

lightweight and portable across devices. Gson has been used to facilitate object serialisation

within Java. It provided the necessary procedures to save and load machines. We also incorporated

Junit to carry out our unit and integration testing.

This application is presented as a JAR file. The JAR file combines the dependencies, the class

files and resources into a bundle that can easily be run. The user will only require the JAR file to

run the application.
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3.3 Development Procedure

The agile model has been identified in the past to be effective in developing e-learning systems

Chun [2004]. The agile approach encourages working closely with the customer. The customer

in this context is the student. This frequent interaction during development allows us to find ways

of making the application more effective as an educational tool.

Figure 3.2: The design process.

We start by codifying the requirements into a list. As discussed, the pedagogical objectives take

precedence in this application. A priority score is assigned to each requirement. Each requirement

is examined against a set of learning objectives. Once all requirements have been finalised, they

are grouped into ordered sets, where each set is allocated to a sprint cycle. At the end of each

cycle, we evaluate the success of a sprint.
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3.4 Requirement Specification

In this section, we codify the requirements of the application into a concise table. This construction

involved gathering information on the domain by analysing previous related works. Each

requirement is awarded a priority score. The priority score represents how closely a feature aligns

with the main aims of the project. An informed choice on the pedagogical functions to include

had to be made. Overwhelming an educational tool with too many features would only make the

application less effective.

The learning outcomes a feature can be classified under:

• Engaging: a feature that requires the user to think and interact actively with the tool

• Explorative: a feature which gives the user the freedom to experience an aspect of the tool

however they wish

• Visual: a feature that illustrates to the user an aspect of the program

• Descriptive: a feature which serves to covey the ideas covered in the literature

• Constructivist: a feature which actively allows the user to construct their own learning

experiences

• Useful: a feature which supports the core functions in the program

Requirement Specification Learning

Outcomes

Achieved

Priority

R1 The user can

graphically define

their machines

This feature would allow the user to

start with a blank machine (no states)

and iteratively modify it by

dynamically adding states and

transitions. The user is allowed to

experience the impact of their

modifications by running input and

examining the results.

Explorative, Visual,

Constructivist,

Engaging

High
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R2 The user can

descriptively

define their

machines in a

systematic fashion

This feature would allow the user to

construct machines using a form

which lays out the various components

in a systematic fashion. This would

match the automata machine definition

format found in the literature. Form

validation would also be incorporated

at this stage to identify any possible

confusions the user might have.

Descriptive,

Engaging

High

R3 The user should be

able to both save

and restore

machine instances

from memory

This feature would allow the user to

save their definitions to memory. The

user could then be able to load these

machines instantly. This feature would

give the user an incentive to return to

the application by allowing the user to

start from a previous session.

Useful Medium

R4 The user should be

provided with

information on

how to use the

system most

optimally

The user can access theoretical and

instructional information concerning

the individual components involved in

creating an automata machine. This

information would be provided to the

user during the definition process.

Descriptive, Useful High

R5 The user should be

able to create their

TM, FA and PDA

instances

The application would allow the user

to define their machines. Each

definition page and procedure is

unique. The simulator would be able

to represent each machine type. The

relationship of power that persists

across the different machines will be

used to convey computational ideas.

Explorative,

Engaging, Visual,

Descriptive

High
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R6 All the important

components

belonging to each

machine type must

be represented to

the user visually.

The

representations

must be utilised

during execution

The simulator would be able to

represent all machine elements

visually. These will include the

distinct components only found on

certain devices, e.g. the stack for the

PDA is represented as a visual stack.

The components must dynamically

change during the execution to convey

the state of the machine.

Visual, Descriptive High

R7 The user should be

able to run input

on a machine and

receive the output

This feature would allow the user to

simulate input on a machine instance.

The application would prompt the user

with the results. The solutions found

during the execution are collected and

shown to the user.

Descriptive, Useful High

R8 The user should be

able to visualise

the machine’s

execution process

This feature would allow the user to

view a step-by-step representation of

the execution process. It would

illustrate how the output is reached.

This includes showing the state of

each component at different stages of

the execution. The transition that was

chosen is highlighted for the user, and

an information panel is dynamically

updated to report the state of the

machine. It must be obvious to the

user what the current configuration of

the machine is.

Visual, Descriptive,

Constructivist,

Engaging

High

R9 The user should be

able to control the

execution process

for a particular

input

This feature would allow the user to

control the execution process. They

can go back to a previous

configuration to replay part of the

execution, progress to the next

configuration or stop the execution.

The user is given the freedom to

explore the execution procedure.

Explorative,

Descriptive,

Constructivist,

Engaging

High
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R10 The user should be

able to load

example machines

and run input of

them

This feature would allow the user to

load pre-defined machines into the

simulator instantly. The set would

consist of a series of well-known

models (i.e. ones that appear in the

automata literature). There would be

examples available for each machine

type. Once an example is loaded, the

user can modify or/and save the

machine to memory.

Useful,

Descriptive, Visual

High

R11 The user should be

able to modify

existing machines

and save those to

memory

The user would be able to reconfigure

machines by adding/removing states

and transitions. This will encourage

learning through interaction and

exploration.

Explorative,

Engaging,

Constructivist

Medium

R12 When the machine

is in a loop for a

run, the application

should intervene

and alert the user.

Whenever the machine is in a loop for

a quick run procedure, after a defined

number of configurations, the

application should pause the execution

and prompt the user on what to do

next. The user can then either continue

the run or can enter step-run

interactive mode to view the cause of

the loop. This would load the state of

the current configuration into the

simulator, and the user could then

manually continue the execution.

Engaging, Visual Medium
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R13 In the case of

non-determinism,

the user should be

able to choose the

next transition

In the step run mode, whenever there

are two or more possible transitions

(i.e. non-deterministic transitions) that

can be taken, the choice should be left

to the user. The user should then be

able to replay that decision when

returning to that configuration. A track

of what transitions have been visited

must be maintained to encourage the

user to explore alternative unvisited

paths.

Explorative,

Constructivist,

Engaging

Medium

R14 The user should be

able to view all

non-deterministic

transitions present

in a machine

The visual transitions that satisfy the

property of being non-deterministic

are highlighted to the user whenever

the user prompts the application for

this feature.

Visual, Descriptive Medium

R15 The user should be

able to view a

graphical

representation of

the machine that is

currently loaded

The application would generate visual

illustrations for each component. It

would also dynamically change to

match the further modifications made

to the machine.

Visual High

R16 The user should be

able to partake in

solving challenges

(design automata

machines of a

certain type based

on description)

This feature would provide pre-defined

challenges that the user can partake in.

These challenges analyse the user’s

ability to design machine instances

and would try to engage the user on a

mental level. The user would construct

machines and submit them. Only

when a submission passes a set of

words will the submission be accepted

as a solution. The challenges become

progressively harder.

Engaging,

Explorative,

Constructivist

high
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R17 The user should be

able to save their

challenge progress

(amount of

challenges they

completed and

their last attempt)

and their challenge

solutions.

This feature would allow users to save

their current attempts. Whenever the

user completes a challenge, the

submission used to solve it is

automatically saved, and a record is

kept of the progress. This feature

would give the user an incentive to

return and continue their challenges.

Useful High
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3.5 Overview of Application

3.5.1 Lecturer use

The application is packaged to be used by two primary principals. The first is that of a lecturer

teaching automata theory in a classroom setting. This scenario would require the student to be

given an overview of the automata concepts first. The lecturer can then incorporate the simulator

as part of the lesson plan. The program in this context would primarily be used to reinforce

taught ideas and produce opportunities to develop more complex ones. The application offers the

lecturer the ability to teach these conceptual processes of operation interactively. The lecturer

takes on a primary function in the learning process and conveys the information directly to the

pupils. The application would be used in combination with the teaching to achieve this.

One of the ways a lecturer could incorporate this tool is by utilising the examples found in the

application. The models are prepackaged and tested machines that the user (i.e. the lecturer)

can load and run. They are devices that are emphasised in the automata literature. They are

simple enough not to overwhelm and challenging enough to engage. The lecturer can load

an example machine into the simulator and run input on that machine. The lecturer is able to

visualise the execution procedure and partake in a step-by-step walkthrough of the execution.

The lecturer can construct a lesson plan around analysing the application’s execution process.

The user (i.e. the lecturer) is given full control of the execution process and can go forward and

backwards in the execution. A visual illustration of each element in the machine is represented,

and each is dynamically changed to match the state of the execution. This approach would be

ideal for communicating across when a machine accepts an input versus when it does not. By

demonstrating both scenarios on an example machine, you can establish a clear distinction in the

student’s head. This application is a tool that primarily aids the lecturer in explaining abstract

concepts that are difficult to teach using conventional methods. The pictorial representation

of computation within the application enables the lecturer to demonstrate first-hand, the key

computational ideas.

Another application could be to construct group-based exercises around the use of it. The students

could be encouraged to assemble a machine collectively. Working in groups has been shown to

engage students and improve communication and decision-making skills. The students could

participate in solving progressively harder challenges within the application. The challenge

feature would allow for the user (i.e. the lecturer) to start with a blank machine (no states) and

iteratively modify it by dynamically adding states and transitions. The graphical representation

of the current machine is updated dynamically. The impact of modifications can be immediately

experienced by running input and examining the results. The group of learners actively cooperate

in their learning experience. This is a constructivist approach to teaching. The lecturer as before
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could incorporate this approach into a standard lesson plan. It would serve as a test that could

evaluate the students level of understanding for taught concepts. It would also serve as an effective

way of reinforcing constructs inside the student’s head. Black and Wiliam [2010] demonstrate

that the utilisation of formative assessments within teaching leads to students retaining twice as

much.

A combination of both approaches would be most optimal. The lecturer would start by demon-

strating how to construct machines (i.e. instructivist approach), and then the students would be

able to implement what was communicated by constructing machines and solving challenges

collectively (i.e. constructivist approach).

The introduction of the save feature allows the user (i.e. the lecturer) to construct and package

examples that can be loaded up at a later date. These examples can be abstractions of computa-

tional ideas. For instance, to convey non-determinism, the lecturer might construct a machine

with non-deterministic transitions and utilise it to teach with. The visual execution process would

serve as an effective way to show non-determinism to students.

3.5.2 Student use

The second principle is of a student with a basic knowledge in automata theory. This applica-

tion does not intend to be a replacement for the curriculum taught at universities. It primarily

reinforces concepts by giving the user the ability to expand on their current understanding. It

accomplishes this by introducing a collection of features that motivate and encourage learning.

One of the main features of the application is the ability for the user to create or modify automata

machines and simulate input on those machines. It will provide the opportunity for the learner to

hypothesise, examine, evaluate the computational ideas that are represented within. Construc-

tivism makes the point that learners create their own understanding through active interaction. The

user would have the freedom to develop an idea (i.e. the machine) and evaluate its effectiveness

immediately after (i.e. simulate input on that machine). The user continuously learns from the

experience of modifying a machine and assessing the outcome. This constant cycle of results

empowers the learner to establish causal links between how a device is constructed and how a

device operates.
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Figure 3.3: A general state machine that covers construction and simulation

Figure 3.3 illustrates the process of creating and operating machines. The Definition instance is

what is generated when the user defines their machine. The simulator uses the Definition instance

to construct the machine.

The user begins at the machine_list view. The user chooses the machine of their choice. Once the

device is chosen, the required form is generated for the user. This view contains the necessary

components that are needed for that machine type. The form walks the user through constructing

a machine. The form includes both theoretical and instructional information concerning the

individual components associated with creating that automata machine. Error handling is also in-

corporated to ensure that the user has the correct understanding when constructing these machine.

Once the user is satisfied with their machine, the application verifies the Definition instance.

In the case of an error, the user is prompted to correct it. The user has an opportunity to re-

flect and learn from their misunderstanding. If the construction is valid, then the Definition

instance is generated and loaded. From there, the user is free to simulate and evaluate execution.

While the Definition instance remains active on the simulator page (i.e. on the screen), it can be

saved to memory. Once saved, it can be restored at a later time.

Additionally, a user can modify their machine after it has been generated, e.g. change the states

or transitions of the Definition instance. Each change triggers the simulator to rerender the

visual representation of the automata machine. The user would need to save their device to

persevere the changes made.

Another way for the students to experience automata machines and the ideas contained within

them are through examples. The example feature allows the user to load prepackaged and tested

machines without the need to define mechanisms first. The definition procedure is a vital aspect

of the system. The hands-on construction of machines can allow students to identify the role of

the device’s constituent parts more effectively. Examples are ideal for learners that want to focus
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on the computational aspects of the application. The models are obtained from the automata

literature. They are used specifically to represent and express how automata machines work. It

is crucial for there to be a comprehensive collection of examples. This is so not to encourage

learners to link a particular instance with the meaning of a concept.

The user can also modify example machines to behave differently. This function encourages

experimental learning. It is achieved by establishing a foundational groundwork of understanding

(i.e. the example machine) and then giving the user the freedom to build off that foundation. If

the user can first experience how an example machine operates, they can make their own modifi-

cations and evaluate the changes by simulating input. Examples also provide a good introduction

for beginners. Examples give exposure to the central features found in this application.

Figure 3.4: The learning cycle was first proposed by Kolb [1984]

A different way for a student to experience automata machines and the ideas contained within

are through the challenges. The user (i.e. the student) starts with a blank machine (no states)

and iteratively modifies it by dynamically adding states and transitions. The graphical repre-

sentation of the current machine is continuously updated to match these changes. The impact

of modifications can be instantly experienced by running input and examining the results. As

before, the user develops an idea (i.e. the machine) and evaluate its effectiveness immediately

after (i.e. simulate input on that machine). The user continuously learns from the experience

of modifying a machine and assessing the outcome. The challenge component incorporates the

opportunity to evaluate. The solution at submission is simulated against a series of input words.

The inputs that deliver an incorrect output are shown to the user. From there, the user is able to

simulate each unsuccessful input on the machine and examine the execution procedure. Once

the problem is identified, the user can modify their solution accordingly and try again. The user

has the opportunity to analyze and revise their solutions if necessary. Only when all outcomes

are correct can the solution be accepted as valid. This procedure follows from David Kolb’s

learning cycle (Figure 3.4). Learners develop their existing knowledge to reach deeper levels of

understanding.
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Automata theory is self-contained, and a lot of the computational ideas are called upon when

constructing these machines. The challenge feature can be used as a mechanism to reinforce

previously taught concepts or establish newer, more complex ideas.

3.6 General Structure

In this section, we will give a brief overview of the system’s structure. Specifically, we will cover

how the system’s components combine to form the application.

The objective was to build a robust application which took into account the complexities of the

system. It was identified from the beginning that a compact design structure had to be constructed

to prevent poor system design.

This was achieved primarily with the use of the Model-View-Controller (MVC) design pattern.

A design pattern is a refined and reusable strategy that can be employed during development

to solve a particular problem. MVC (Figure 3.5) provided the necessary abstractions between

classes. It established a clear separation between the view classes (i.e. what the user sees), the

model classes (i.e. the business logic) and the controller classes (i.e. the classes responsible for

handling user interaction and overseeing component communication).

For each distinct machine component, there was a corresponding FXML view class, a controller

class which handled the user interaction and communicated the model’s state to the view, and a

model class which represented the internal state of that component. An example representation of

this can be seen in Figure 3.6. The apparent decoupling between the view and model improves the

maintainability of the code. The abstraction allows for a machine to run input in the background

without needing to invoke the foreground (i.e. the visual simulator itself) — a necessary property

for Quick-run.

Figure 3.5: A basic model-view-controller representation. MVC [2018]
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Figure 3.6: A model-view-controller representation of an individual component of the system.

The practical application of code reuse allowed us to save time and decrease redundancy by

isolating reoccurring functionality across classes. Due to the similar nature of the machines,

MVC was an ideal approach to accomplishing this. For example, the InputTape model class is

used in several different locations in the application. By encapsulating both the functionality and

state of an input tape within a model class, it can easily be accessed multiple times.

We also introduced the use of utility classes. HelperFactory and UIFactory are classes that contain

functions that are required in several locations in the code. Instead of defining functions in classes

that need to access them, they can be implemented as static methods in the utility classes. Since

these methods are static, all classes have access to them. Whenever a utility method needs to

change, the body only needs to be modified in a single location. Utility classes are essential in

removing redundant code and improving maintainability.

We will only consider documenting model classes. The controller, for the most part, only triggers

self-contained processes within the model.

3.6.1 Model

As was discussed before, the model contains the business logic for this application. It encapsulates

the functionality of the different machines and their elements. Each machine has a corresponding

class which is responsible for simulating it. For instance, the FiniteAutomata class provides the

state and behaviour required to simulate a finite automaton. This machine instance has access

to several structures and a definition instance that describe its internal construction. It is the

machine’s responsibility to organize the various elements during execution. This is primarily

done by establishing a channel of communication amongst them. Below we outline the essential

model classes involved in this process and the role each plays.
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InputTape

This class is responsible for simulating an input tape component. An InputTape object is created

with each machine instance. It is a wrapper class that encapsulates an ArrayList of characters (i.e.

the state of the tape) and a head position that represents the head. It defines a collection of access

methods which are important for documenting the input tape’s state and relaying information

to the view. It operates like a standard input tape. The loadInput() method loads an input word

onto the tape ready for processing. It defines a read() method which reads the symbol at the

tape’s head and increments the head pointer by one. It also defines setPosition(newPos:integer)

which sets the current head position. This method is employed when a machine instance needs to

backtrack to a previous configuration in the computation. We keep track of the head positions of

older configurations and can load them dynamically. This InputTape also incorporates methods

that are only invoked in the TuringMachine class. For a Turing machine, the tape can move in

both directions and can be modified (i.e. written to). To simulate this, we incorporate null values

in the tape to denote empty cells. We dynamically modify the content by shifting the ArrayList.

empty() is a method which is used by a Turing machine object to evaluate when a tape is empty

ControlState

This class is responsible for representing a control state component. It is a wrapper class which

encapsulates the properties of a control state. It holds a name field and two boolean fields,

isAccepting and isInitial. The ControlState class is used by Machine instances to carry out

computation. They are also used to represent the control states within the Definition class.

Transition

This class is responsible for representing a transition component. It is a wrapper class that

encapsulates the properties of a transition. Each automata machine defines transitions differently.

For instance, the PDA defines a transition as including the element to pop and the element to

push. Since the other devices do not incorporate a stack, the transition formats for a TA and

FA do not require these. It was decided to have a single Transition class to represent all of the

different formats. A Transition instance would be identified by the type field which would define

the kind of transition, e.g. a transition instance for a FADefinition would be represented with the

type 0. The Transition class defines a separate constructor for each machine type.

Snapshot

This class encapsulates the state of a machine at a particular configuration in the execution. It

is a wrapper class that encapsulates the tape’s head position, the current ControlState instance,

the step in the computation and other necessary values (Figure 3.7). A Snapshot instance for a
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PushdownAutomata machine would also contain the stack’s state. From a current configuration

(i.e. a Snapshot instance), a collection of possible configurations are generated for each transition

that can be taken.

Figure 3.7: The Snapshot class

The Snapshot instance operates as a node within an execution tree. The Snapshot maintains a

list of Snapshot children nodes and a Snapshot parent node. In the case of non-determinism,

several possible branches can be taken. The criteria for rejecting input in a non-deterministic

machine is that all possible branches must fail. The tree is used to keep track of the execution. A

Snapshot instance also maintains an isVisited field to mark when a configuration has been visited.

Backtracking is necessary when the current path does not result in an accepting configuration.

On backtrack of the tree, the machine instance must be able to keep a memory of what branches

have already been explored.

PushdownStack

This class is responsible for simulating a stack component. It is a wrapper class which encapsulates

an ArrayList of string characters. It defines a collection of access methods which are important

for both documenting the stack’s state and relaying information to the view. top() is a method

which returns the top element of the stack. The setStackState(String stackstate) method loads

the stack with state. It works by breaking the input down from left to right into an array and

loading each onto the empty stack. The PushdownStack is not a conventional stack data structure.

It does not define pop() or push(String charToPush). The stack’s state is mainly controlled
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by the PushdownMachine class via the setStackState(String stackState) method. The Snapshot

stores the stack’s state. When a configuration is entered, the machine retrieves the stackState

from the Snapshot and loads it into the PushdownStack. push() and pop() are not necessary

since we generate the Snapshot instances before we need to explore them (i.e. in the previous

configuration). The PushdownStack instance is only used in the interest of representing the

current stack’s state.

Definition

The Definition class is a blueprint of a machine. It represents the internal structure of a Machine

instance. There is a separate definition class for each machine type. FADefinition for finite

automata, PDADefinition for the pushdown automata and TMDefinition for the Turing machine.

The Definition is what is generated when the user defines their machine. The simulator uses the

Definition instance to construct the machine onto the view.

FADefinition - This class encapsulates the formal description of a finite automaton. It is a

wrapper class that contains the Transition instances, the ControlState instances and the initial

ControlState instance. It utilises the literature’s definition of the FA (Figure 3.8).

Figure 3.8: The finite automata definition as defined in The Introduction To The Theory Of

Computation Sipser [1996]

PDADefinition - This class encapsulates the formal description of a pushdown automaton. It

utilises the literature’s definition of the PDA (Figure 3.9). It also includes an isAcceptByFinalState

field. This field is in charge of determining the machine’s acceptance criterion. Since there is

only two possible acceptance criterion for the PDA, a boolean field is enough to represent both.

Figure 3.9: The pushdown automata definition as defined in The Introduction To The Theory Of

Computation Sipser [1996]
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TMDefinition - This class encapsulates the formal description of a Turing machine. It is a

wrapper class that contains the Transition instances, the ControlState instances and the initial

ControlState instance. It utilises the literature’s definition of the TM (Figure 3.10).

Figure 3.10: The Turing machine definition as defined in Introduction to Automata Theory,

Languages, and Computation Hopcroft et al. [2006]

Machine

The Machine interface declares the essential methods that an automata machine must contain.

All individual machine classes must implement this interface. This relationship is represented in

Figure 3.11.

Figure 3.11: The Machine interface’s relationship with the other automata machine classes
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The introduction of a universal interface enables us to decouple what the automata machine is

from how it does it. There are several automata machines that are featured in this application.

They share a lot of the same operations. Much of the code that can be implemented in one machine

can be reused in the same way for the others. The interface establishes a general reference type

that we utilise to build generic methods.

Fields

Each instance has access to its constituent elements and a definition instance which

describe its internal construction.

Additional fields to keep track of the execution :

• Snapshot currentConfig - This object encapsulates the state of a machine (i.e.

any machine class) at a particular configuration in the execution. It is a wrap-

per class that encapsulates the tape’s head position, the current ControlState

instance, the step in the computation and other necessary values. When the

machine is not in operation, it is set to null.

• ObservableList<ArrayList<Snapshot» history - A list which keeps a track

of all the recognised solutions in the current session. An execution might have

more than one possible solution due to non-determinism. history is used as

a means to keep a track of what solutions have already been discovered and

ultimately allow for newer solutions to be found.

Methods

• loadInput(String word) - A method which loads input into the machine in-

stance. It starts the execution off by creating an initial Snapshot to represent

the starting configuration. This Snapshot holds the initial ControlState instance

of the machine.

• getPossibleConfigurations() - A method which returns the possible config-

urations that can be explored from the current Snapshot. It is defined in the

form ArrayList<Snapshot>. This list is generated by applying each possible

transition to the current configuration and generating for each a resulting con-

figuration Snapshot. Each transition consists of two parts: the configuration (i.e.

the prerequisite of the machine) and the action (i.e. the impact on the machine).

The possible transitions that are retrieved from the Definition instance must

satisfy the current configuration of the machine.
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• exploreConfiguration(Snapshot config) - A method which takes a configura-

tion Snapshot and loads it into the current machine instance. This Snapshot

encapsulates the state of a machine at a particular configuratioan in the execu-

tion. It is a wrapper class that encapsulates the tape’s head position, the current

ControlState instance, the step in the computation and other necessary values.

This method is essential for exploring newer configurations and prior ones that

occur as a result of backtracking.

• exploreUnvisitedChild(ArrayList<Snapshot> possibleConfigurations) - A

method which takes a list of possible configuration snapshots and explores the

first one that has not been visited.

• addPathToHistory() - This is a method which adds the current sequence of

Snapshot instances to the history field. The execution sequence can be extracted

from the machine by exploring the current Snapshot’s ancestors via the parent

field. addPathToHistory() checks that the sequence of Snapshot instances is

not present in history before adding it.

• next(boolean skipAcceptanceCheck)- A method which is responsible for re-

trieving the possible configurations via the getPossibleConfigurations() method

and setting it to the current Snapshot’s children set. An illustration of this is

represented in Figure 3.12. If there are no possible configurations (i.e. no tran-

sitions can be taken), then the method returns the result code zero to indicate

this. For each next() call, the acceptance criterion is checked. If the condition

is satisfied, then one is returned. In all other cases, the method returns two.

Figure 3.12: A visual representation of next().
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• prev() - A method which loads the previous configuration. It does this by

retrieving the current Snapshot’s parent and loading it into the machine via

exploreConfiguration(Snapshot config) . An illustration of this is represented

in Figure 3.13.

Figure 3.13: A visual representation of prev().

• nextChoice() - A method which explores each subsequent configuration from

the current until a configuration is found where its children size exceeds one.

This occurrence represents the case of non-determinism where more than

one possible configuration can be produced from the current configuration.

nextChoice() repeatedly calls next() and exploreUnvisitedChild(ArrayList<Snapshot>

possibleConfigurations) in a loop. An illustration of this procedure is repre-

sented in Figure 3.14.

Figure 3.14: A visual representation of nextChoice().
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• prevChoice() - A method which explores each previous configuration from the

current until a configuration is found where its children size exceeds one. This

occurrence represents the case of non-determinism where several different con-

figurations can be produced from a single configuration. prevChoice() works

by repeatedly calling the method prev() and examining how many children

each node has. It works the same as nextChoice(), however instead of going

down the execution tree, it goes up.

• quickRunFromCurrentConfig() - This method incorporates all the above

methods to carry out a depth-first search of the execution tree starting from

the current configuration. It explores each branch until a Snapshot is found

which, when loaded satisfies the acceptance criterion of the machine. In the

case where a branch results in a configuration that is not an accepting one, the

algorithm leverages prev() to go back up the tree and exploreUnvistedChildren()

to explore an alternative Snapshot which has not been marked as visited. This

process is repeated until the entire execution tree has been explored, and no

accepting configuration has been identified. At this point, the algorithm outputs

the result zero to represent this outcome. In the case where a valid sequence of

Snapshot instances are found, then the solution is appended to history via the

addPathToHistory() method. The repeated calling of quickRunFromCurrent-

Config() would produce a different solution. The history field is responsible for

keeping track of the solutions during the execution. The method utilises the

history field to locate different solutions. If a solution is found in the process,

which already exists in history, then the machine backtracks and explores a

different path instead. An illustration of the quickRunFromCurrentConfig()

procedure is represented in Figure 3.15.

Figure 3.15: A visual representation of quickrunFromCurrentConfig().
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PushdownAutomata - This class is responsible for representing a pushdown automaton. The

PushdownAutomata class implements the Machine interface. It introduces a stack which can

be utilised during execution. The PushdownAutomata instance dynamically loads state into the

PushdownStack during execution.

TuringMachine - This class is responsible for representing a Turing machine. For a Turing

machine, the tape is bi-direction (i.e. can move in both directions), and it can be modified during

execution. To keep the same InputTape class, the TuringMachine must manage the content of the

InputTape explicitly. To simulate empty cells, the TuringMachine incorporates null objects on the

tape. This is important for when two characters are separated by several empty cells. To simulate

going left on an input tape, the TuringMachine decrements the head position of the tape by one.

In the case where the head position is at 0 already, then it shifts the array forward and includes a

null object at the start of the tape. We keep the head at the same location.

3.7 Main Features

In this section, we look at the primary features and their more general role in this application. We

will explore how each came about and outline some of the challenges that arose in constructing

them.

3.7.1 Definition Procedure

This features enables the user to construct devices. It is achieved through the use of detailed and

descriptive forms. In the machine_list view, the user can choose their desired machine type. This

page contains the main devices. For each, a concise description is given. This description covers

the computational advantages of each. The information presented tries to communicate across

why creating these machines are important.

Once the device is chosen, the form is generated. This view contains the necessary components

that are required for the machine type. As was mentioned already, each machine form mirrors

the corresponding formal definition described in the literature. The form walks the user through

assembling a machine. The FA form can be seen in Figure 3.16. First, the user starts with defining

their control states. Then the user establishes their initial state (i.e. the source) and accepting

states (i.e. the targets). The user then defines their transitions. The user is effectively generating

possible routes between the control states. The ordering of the fields is significant in allowing the

user to appreciate the process of designing a machine.
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The form also includes theoretical and instructional information relating to the individual com-

ponents that are associated with creating the automata machine. Compared to the alternatives,

this application incorporates technical information wherever applicable in order to aid the user’s

understanding. Some users are less familiar with these concepts than others. It is therefore

essential to accommodate for the different skill levels as an educational apparatus.

Figure 3.16: The form for constructing the finite automata.

The alternative graphical definition approach (i.e. drag and drop) adopted by JFLAP is com-

plicated and ineffective. The user should be able to create and modify machines easily. The

descriptive approach enables users to construct their machines explicitly. It also mirrors many

ideas represented in the automata literature.

Obstacles and Considerations

definition simplification - During development, unnecessary fields were removed from each

form. Fields such as the input alphabet only limit the ability for the user to construct machines

and simulate input. These types of fields were recognised as restricting the learning effectiveness

of the overall system.

error handling - A prototype of this application was given to students to demo. The results found

that many students were constructing machines incorrectly, and as a result, could not simulate

them successfully. From this, we decided to incorporate error handling within the definition view

that forced the user to define each component correctly. This is a means of ensuring that the user

will always generate valid machines.
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wildcard transitions - Some languages require a machine to have many transitions in order to

recognise them. For instance, the language of English words that end with ’ing’. There are

26 alphabetic letters that we need to express for this example. This would require the user to

define 26 individual transitions. This process would be exceedingly long for the user. Instead, we

implemented wildcards to allow the user to represent groups of transitions with minimal effort.

An illustration of this is represented in Figure 3.17. The simplification enables the user to create

complicated machines more easily.

Figure 3.17: A transition wildcard representing 26 different transitions.

3.7.2 Execution of a Machine

The system must be able to simulate the execution of each machine to represent the ideas they

communicate effectively. The motivation of this project comes in wanting to convey this process

in a meaningful way to students by using effective visualisation and interaction. Many of the key

ideas are represented within the execution process, so it remains an essential part of the system.

This application introduces two modes of operation. Both allow the user to simulate input.

Quick-Run

This feature allows the user to run input and instantly review the results of the execution. It works

by running a depth-first search in the background to find an individual path that results in an

accepting configuration. The decoupling achieved through MVC allows us to simulate a machine

without having to interact with the visual components. In the case where input is accepted, the

user will be prompted with the sequence of configurations which lead to the machine accepting

the input (Figure 3.18). This is a basic feature which the user can use to quickly evaluate their

machine’s effectiveness.

Figure 3.18: A result pane.
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This feature is essential for the user’s learning process. The user continuously learns from the

experience of modifying a machine and assessing the outcome. This constant cycle of results

empowers the learner to establish causal links between how a device is constructed and how a

device operates. An illustration of this process can be seen below in Figure 3.19.

Figure 3.19: The learning process of continually modifying a machine and assessing the outcome.

Obstacles and Considerations

simulating non-determinism - In order to simulate these machines entirely, non-determinism

must be implemented. Non-determinism occurs when two or more transitions can be taken in the

execution. To tiebreak in quick-run, we utilise the original order that transitions were defined in

and choose the first in that arrangement that results in a configuration that has not been visited

yet. The user can later examine the transitions that were explored in the results pane.

finding multiple solutions - It was observed that for a non-deterministic machine, there could

exist several accepting sequences. The system must serve the user with these alternative solutions.

The user can request the application to look for more solutions. We incorporate the history field

in the Machine instance to keep a track of the solutions that have been found during the quick-run

process. The Machine instance looks for newer solutions in the same execution tree.

non-terminating machines - The quick-run operates by exhaustively searching the execution

tree until a unique sequence of configurations is found. There are some machines which never

terminate during execution due to them continually entering newer configurations. When this

occurs, the machine can never backtrack in the execution tree. The introduction of an epsilon

transition makes this possible. The input tape is finite since the input word is finite as well.

However, the introduction of the epsilon transition means that the reading of the symbol at the

head is not a necessary step. The user can construct a cycle of transitions that never modify the
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input tape. JFLAP does not address this problem, and such an event will cause it to crash.

For this application, whenever the machine is in a constant loop for a quick-run procedure, after

20 configurations, the application will pause the execution and prompt the user on what to do next.

An illustration of this is seen in Figure 3.20. The user then can either continue the run or can enter

step-run mode to view the cause of the loop. This would load the state of the current configuration

into the simulator, and the user could then manually continue the execution, allowing the user to

review the process themselves.

Figure 3.20: An alert box which is shown to the user when a quick-run process exceeds 20

configurations.

Step-Run

This feature allows the user to visualise a step-by-step representation of the execution process.

It illustrates how the output is reached for a particular input. This includes showing the state

of each component at different stages of the execution. This feature will promote learning

through effective interaction and exploration. As was stated previously, a lot of the ideas around

computation are demonstrated through execution, so it remains essential that this process is

represented correctly.

Graphical representation

Alternative applications do not represent the procedure of execution in any valuable way. Unlike

JFLAP, the input tape will be integrated into the execution with other important elements. These

components are intentionally made simple. Overcomplicating the visuals can have an adverse

effect on the user’s experience.

• Input Tape - This view (Figure 3.21) is a representation of an input tape. It is dynamically

modified to match the state of the InputTape model class.

Figure 3.21: An input tape.
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• Transition Table - This view (Figure 3.22) encapsulates the current set of transitions

within a table. When a transition is explored in the execution, the corresponding row is

highlighted.

Figure 3.22: A transition table.

• Pushdown Stack - This view (Figure 3.23) is a representation of the pushdown stack, a fea-

ture found in the PDA. It is dynamically modified to match the state of the PushdownStack

model class.

Figure 3.23: A pushdown stack.
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• Information Panel - This view (Figure 3.24) expresses a set of labels that are vital in

describing the state of the current machine.

Figure 3.24: An information panel.

• Graphical Panel - This view (Figure 3.25) is responsible for representing the automata

machine visually. All the contained states and transitions are illustrated as visual com-

ponents. On execution, the current state is highlighted. When a transition is explored, it

triggers an animation that highlights the visual transition for a duration of two seconds.

Figure 3.25: A graphical panel.

All these components are used in combination to represent a procedure. Through animation and

practical design, we simplify these conceptual ideas into easy-to-understand representations. The

theoretical machines are portrayed as graphical objects that change dynamically. This encourages

students to interpret these machines as if they were physical devices operating in the real world.
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Non-Determinism

Non-determinism occurs when two or more transitions can be taken in the execution. To tiebreak

for step-run, we prompt the user with a transition selection box (Figure 3.26). The user has the

freedom to determine the execution path. The application allows the user to pick the transition

that will be explored. This function encourages experimental learning. When the user visits a

configuration, it is marked as visited in the execution tree. The next time the user visits that

configuration, the transition that was previously selected is indicated to the user as previously

being visited. The user in these instances are encouraged to explore alternative paths.

Figure 3.26: The transitional selection panel.

For JFLAP, non-determinism is not really addressed as clearly. An illustration of this is below in

Figure 3.27. JFLAP explores several different branches in parallel when non-determinism occurs

and repeatedly does this for each new occurrence. When a machine has a lot of non-deterministic

transitions, the execution process becomes challenging to trace. The user becomes overwhelmed

with the information that is being shown to them.

Figure 3.27: The left image represents a point in the execution where four non-deterministic

transitions can be taken. The right image shows the resulting effect of this when Step i.e. Next

is called. The JFLAP application splits the execution into four. The first two paths fail, and the

second two continue to split further.
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User Interaction

The other aspect of the step-run procedure is the interaction it offers the user during the walk-

through. The application allows the user to control the execution process. Step-run allows the user

to traverse the execution tree for a particular input. They can go back to a previous configuration

to replay part of the execution or progress to the next configuration. The user is given the freedom

to explore. It goes further than JFLAP by giving the user more control. For instance, in JFLAP,

the user cannot go back in the execution.

• Next - allows the user to go forward in the execution by one configuration. If a subsequent

configuration does not exist in the execution tree, then the machine can evaluate the

results of the current execution path. For each next call, the transition that was chosen is

highlighted in both the transition table and the graphical panel. Also, the new visual control

state is highlighted. The input tape and the information panel are refreshed to represent the

new state of the machine.

• Previous - allows the user to go back to the previous configuration to replay part of the

execution.

• Next Choice - Explores each following configuration from the current until a configuration

is found where the number of transitions which can subsequently be applied exceeds one.

This represents the case of non-determinism where more than one possible configuration

can be generated from the current configuration. The user is prompted to choose the

transition to explore when this occurs. If there are no cases where this occurs (i.e. a

deterministic machine), then it will progress till the machine reaches an output.

• Previous Choice - Explores each previous configuration from the current until a configu-

ration is found where the number of transitions that can be subsequently applied exceeds

one. This represents the case of non-determinism where more than one possible configura-

tion can be produced from the current configuration. The user is prompted to choose the

transition to explore when this occurs. If there are no cases where this occurs, then it goes

all the way back to the initial configuration.

• Stop - allows the user to cancel the execution and reset the simulator

• Reset - allows the user to start back from the initial configuration. The execution tree is

preserved, so all visited configurations will be marked as such to the user.

Obstacles and Considerations

finding a solution - It was found that it would take considerable effort on the user’s part to find a

solution for a machine that contained a high number of non-deterministic transitions. It would
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involve the user manually exploring every possible branch in the execution in the hope of finding

an accepting configuration. To remedy this event, we incorporated Quick-run as part of the

Step-run function. The user can initiate it at any point, leaving the system to search for a solution

instead.

3.7.3 Save Feature

The save feature allows the user to save their machine instances to memory and reload them back

after closing the program. It provides an incentive for students to return to the application by

allowing them to start from a previous session. As was mentioned earlier, It also allows teachers

to package machines which can then be used within a classroom context to teach ideas related to

automata theory.

In this application, we utilise a library called GSON, which allows us to serialise Java objects into

JSON. Whenever the user requests for their machine to be saved, the Definition instance, which

represents the internal structure of the machine, is extracted and serialised into JSON. The user

additionally assigns a description to the machine to allow them to identify it later. We maintain

a list of saved Definition instances in the GlobalStore class. When a definition is saved, it is

added to that list. The list is then serialised into JSON and stored as a single file in memory. We

maintain a store file for each Definition type. For example, FADefinition instances are stored in

finite-automata-store.json.

The user can view their machines in the machine_store_view. They can load or remove machines

from here. When the user needs to load a machine from their library, the store file is retrieved

from memory and serialised back into a Java object (i.e. a collection of definition instances). The

particular Definition instance is found and loaded into the simulator.

The user can also modify a machine after saving. The changes made can be written to memory.

This is important for incrementally allowing the user to improve their solution.

Obstacles and Considerations

This application is presented as a JAR file. Jar files are read-only. They package all dependencies

within a compressed file (i.e. in ZIP format). This meant that we were not able to include the

storage files inside the JAR. These files are not static and need to be continuously changed. The

application instead saves the files in the same directory as the JAR file. On loading a machine,

It first checks that these files exist in that location, and if they do not, they are created. This

approach presents another problem. The JAR file on being relocated will result in the user losing

their saved machines.
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3.7.4 Examples Feature

The feature allows the user to load pre-defined machines into the simulator instantly. The models

are prepackaged and tested machines that the user can load and run. They are obtained from the

automata literature, and are used specifically to represent and express how automata machines

work. They are simple enough not to overwhelm and challenging enough to engage, and can be

deployed to allow the user to familiarise with key concepts quickly.

Kyle Dickerson’s automata simulator is the only alternative that incorporates integrated examples.

There is a total of three examples on the platform, all of which are basic. It is crucial for there

to be a comprehensive collection of examples. This is so not to encourage learners to link a

particular instance with the meaning of a concept.

Figure 3.28: An example Turing machine that is available to the user to load. The machine

recognises the language of even palindromes.

3.7.5 Challenge Feature

The feature allows the user to participate in solving progressively harder challenges within the

application. The challenge dashboard provides a list of challenges (Figure 3.29). Each challenge

comes with a difficulty level, a machine type, and a description of the language to solve. The

challenge feature allows for the user to start with a blank machine and iteratively modify it by

dynamically adding states and transitions. The graphical representation of the current machine is

updated dynamically. The user can examine their machines by running input on them during this

process.
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Figure 3.29: The user’s challenge list.

When a user has constructed a solution, they can submit it. This will open a results box that

will run the machine against a set of pre-defined inputs. Only when the machine successfully

interprets all input words will the application accept the machine as a solution. When a user

completes a challenge, the solution is saved, and the challenge is marked as complete. The

state machine documents this process (Figure 3.30). As was mentioned before, this feature will

encourage exploration through engagement. The user will be given an opportunity to experience

the impact of their modifications by running input and examining the results. These challenges

try to analyse the user’s ability to design machine instances and also engage the user on a mental

level.

Figure 3.30: A state machine documenting how a user solves a challenge within the application.
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3.7.6 Other important features

The application introduces non-deterministic mode, which allows the user to view the transitions

that are non-deterministic in the present machine. It does this by highlighting the visual transitions

that are non-deterministic. It is useful for the students to recognise non-determinism as a concept

because it can help them to understand determinism and notably what is possible during execution.

The introduction of non-determinism as a theoretical concept makes it easier for students to

reason with these computational procedures.

It was identified that the visual representation of these machines had to be clear and concise.

The graphical panel of the application is responsible for generating a visual image of a machine

instance. The graphical panel initially represented the states in the order in which they were

created. From this arrangement, it was often the case that a lot of the visual transitions would

intersect, and as a result, It became difficult for the user to follow the execution. An algorithm

had to be constructed, which analysed the best arrangement (i.e. how easy is it for the user to

comprehend). The algorithm works by computing a score for each possible arrangement. This

score is calculated by counting the number of transitions that intersect. The combination with the

lowest score is chosen to be represented.
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Chapter 4

Evaluation

Students and lecturers are the primary users for this tool. We have previously laid out the main

functions of this system concerning the kind of user operating it. We can evaluate the system’s

effectiveness by examining how a primary user employs this tool to carry a defined function.

4.1 Testing

An educational tool must be correct. The user must be able to extrapolate accurate information

from the application. The failure in achieving this would make the application void. Both an

extensive research process and a comprehensive collection of tests can help to ensure accuracy.

Junit, an open-source Java testing framework, was employed to carry out the testing requirements

for this application. We implemented a series of wide-ranging unit tests that examined the

correctness of individual elements within this application. We focused the model classes that were

responsible for simulating the different components within the automata machine. For instance,

we constructed a series of unit tests to evaluate the InputTape class. It analysed the functionality

of the tape, and specifically how it operates (i.e. how a symbol is read on the tape). We created

tests for each of the main model classes within the system.

We also implemented integration tests for each automata machine class. These tests examined

how the individual elements combined to carry out functionality. For us to verify that the system

could correctly simulate these machines, integration testing was a necessary step. We constructed

tests for several key edge-cases and reviewed primary functions within the Machine class. These

tests looked to examine components at different parts of the execution and analyse how they

interact with the machine as a whole. We also generated tests to examine the correctness of the

examples that are available in the application. It involved running a group of input words on each

model and reviewing the generated outcomes.
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For this project, we adopted an agile approach. The early addition of testing enabled us to take a

test-driven approach when implementing features. The codebase became significantly large and

as a result, meant that code adjustments were likely to have adverse outcomes on functionality.

The introduction of tests assured us that no code was being broken during development. For the

limited amount of time that was available, testing was an effective way for us to integrate new

features into the system.

4.2 User Survey

Evaluation objectively analyses a program. It involves gathering and interpreting information

regarding a program’s activities, features, and results. Its intention is to make determinations

about a program, strengthen its usefulness, and advise choices on programming. Given the depth

of the application and the time allocated to implementing it, the evaluation is not as exhaustive as

it should be. An entire paper could be given to examining the effectiveness of this application.

In this part of the evaluation, we analyse the application from the perspective of a student using

it to learn. We began by establishing a sample size of students that could participate in each

experiment. The sample consisted predominantly of third-year computer science students. We

examined the eligibility of each participant. The students were required to have some prior

knowledge of automata theory. This would enable them to use the features of the application

more effectively. We interviewed each candidate to examine their levels of understanding. We

asked simple questions like "what are transitions?". We wanted to ensure that participants were at

a basic level before we began. A total of 10 students were chosen.

4.2.1 Blinded Experiment

The first experiment involved the participants demoing a set of the automata machine simulators.

We excluded jFast from the experiment because it could not simulate the execution procedure.

The applications that were examined:

• Automata Simulator (i.e. the proposed application)

• JFLAP (Patel)

• Cburch Automata Simulator (Burch)

• Kyle Dickerson’s Automata Simulator (Dickerson)

Each participant was given the applications in random order with no information as to what

system was ours. We did not want the results to be skewed. The information that may have

affected the participants was maintained until after the end of the experiment. Each participant
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had 20 minutes to demo each application. They were given a list of aspects to consider during the

demo:

• The creation/defining process

• The automata machine that can be simulated (FA, PDA or TM)

• The visualisation of the execution process

• The auxiliary features

• The user interactivity

• The engagement and enjoyment level

This was done to focus the participants ’ attention on evaluating the application’s usefulness

instead of on how it looked. Students were told to review and rank the applications from best to

worst. The outcome of the study is defined below.

Figure 4.1: A graph representing the participant rankings of each application.
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For eight of the ten participants, our application was identified as being the best tool. One of the

original aims was to produce an educational tool that was more effective than the alternatives. A

lot of the participants preferred the simple mechanics and illustrations that were incorporated. The

students appreciated the inclusion of challenges. They identified challenges as a self-motivating

part of the application that could be used to engage them.

JFLAP came third amongst the collection. This was a surprising outcome, as JFLAP was

identified as the most comprehensive solution during research. Many of the criticism came

from it being too hard to understand. The users had a challenging time understanding what was

being conveyed. This continued even after the user had access to the JFLAP documentation.

This confirms our initial assessment that the inclusion of too many features by JFLAP made the

application less effective as an educational tool. However, many students did like the definition

procedure. They liked interactively modelling their machines using visual mechanisms (e.g. drag

and drop).

Kyle Dickerson’s automata simulator came in second. Its modern appearance was recognised as

the main reason. It incorporated examples that the students appreciated. They especially liked

how simple the system was. The application concentrated on a single task (i.e. simulating the

execution procedure). Kyle Dickerson’s automata simulator had several flaws. For instance, the

application was not able to simulate a Turing machine. This was the main constraint noted by

participants. Yet it is still perceived to be better than JFLAP.

Cburch automata simulator was last placed. Many participants described the tool as being

incomplete. The finite automata and pushdown automata functions were not working as intended.

The students were unable to enter input. From amongst the set of machines, only the Turing

machine could be simulated. Students were having a challenging time constructing and simulating

these machines. They did not know when a machine accepted or rejected an input as there was no

indication of either event. From the perspective of the student who uses this system, usability is

the most necessary criteria. The Cburch automata simulator is not a user-friendly solution.
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Summary

In summary, it was identified that students did not necessarily want an e-learning application

that could do many tasks. They wanted a tool that could do a single task really well. JFLAP’s

complex operations demotivated the students to use their system. An excellent user interface was

also identified as being critical to an e-learning system. It allows an application to appear better

than it is in reality. This experiment provided us with valuable data concerning the effectiveness

of each application.

4.2.2 Focused Interviews

The second part of the user study is more focused. We evaluate the application itself and in

particular explore the main aspects of the system. It consisted of a series of questionnaire-based

interviews. For each interview, the participant interacts with the application. The user will be

prompted with a series of statements that look to examine the different parts of the application

and will be asked to answer on whether they agree or disagree. These require a fixed response by

the participant. The classification of answers are defined below.

• Strongly Agree = 2

• Agree = 1

• Neither Agree or Disagree = 0

• Disagree = -1

• Strongly Disagree = -2

In this section, the conductor actively participates in the user’s journey through the application. We

also incorporated a think-aloud strategy during the demoing of the application. The participants

could elaborate on any ideas or critiques they might have during the demo regarding the various

statements.

The features of the system to examine are:

• Machine Definition Procedure

• Execution Procedure

• Auxiliary Feature (e.g. examples, challenges)
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4.2.3 Machine Definition Analysis

In this section, we asked a number of focused questions to examine the effectiveness of the

definition procedure. The demo part of this analysis involved each participant constructing their

machine. The entire survey for this section is available in the appendix. A summary of its findings

is found below.

Figure 4.2: A table of statements concerning the definition procedure of the application.

Figure 4.3: A graph representing the average response for each statement outlined in Figure 4.2.

In summary, the average score was 1.48 across all statements. Every participant entirely agreed

with statement 3. The participants liked the additional information that was presented for each

machine type. They also liked how the element fields featured in the form were clear and precise.

The process of defining the machine explicitly forced the users to reason with the elements

involved, and this gave them a greater appreciation for the individual components.
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Statement 5 and 6 achieved an average of 0.8 and 1.2. These were the lowest scores from amongst

the statements. For statement 5, four participants believed that the form was not the best way for

users to define machines. The participants felt that the process was not engaging enough. All

participants had experience with the interactive mechanisms defined in JFLAP. They appreciated

the ability to manipulate machines directly. A few of the students’ described the definition

procedure as good; however, mentioned that the inclusion of an interactive procedure that enables

the user to manipulate their machine physically would make it better. This was a commonly-held

opinion across all statements.

In general, the results are very positive. The survey confirms that the definition procedure is

adequate for the user. The results verify that the user can effectively create machines of any

complexity. It was additionally noted that participants wanted an interactive way of defining

their machines. However, as we recognised before, incorporating such a feature will abstract the

mechanisms of the system away from the theoretical concepts they represent. The feedback may

not be characteristic of each strategies ’ usefulness. Each participant had no basis for using the

system, and their analysis was principally constructed on their experiences at the time. In order

to evaluate both methods within an educational context, a more comprehensive analysis has to be

done.

4.2.4 Execution Analysis

In this section, we asked a number of focused questions to examine the effectiveness of the

execution procedure. The demo part of this analysis involved each participant simulating input

on an example machine and tracing the execution process. The entire survey for this section is

available in the appendix. A summary of its findings is found below.

Figure 4.4: A table of statements concerning the execution process of the application. These are

put to the students.
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Figure 4.5: A graph representing the average response for each statement outlined in Figure 4.4.

The average score was 1.71 across all statements. The students liked the execution mode and

notably the amount of control it gave in allowing them to decide which branch to explore in the

execution. They also liked the representations. The illustrations and animations were recognised

as being used effectively within the system. The users found the chained events of execution easy

to follow. As a result, the participants were able to reason with the application effectively.

Some participants did not believe the execution features were intrinsically obvious. It was noted

that there should be a guide feature to introduce users to the individual controls of the system.

It was also noted that these features were not enough to convey new ideas to students. Most

students had no prior experience of the pushdown automata. In experiencing the machine for the

first time, they were able to pick-up the functionality easily, but they could not extrapolate the

ideas relating to what those additional elements meant in terms of power. An application that

could more actively compare the different machines together would encourage the user to identify

the differences and comprehend the underlying ideas more easily.

4.2.5 Auxiliary Features Analysis

In this section, we asked a number of focused questions to examine the effectiveness of the

challenges and examples available within the application. The demo part of this analysis involved

each participant interacting with a series of example machines and attempting a collection of

challenges. Due to the constraint on time, it was not exhaustive and did not cover all aspects of

these features. The entire survey for this section is available in the appendix. A summary of its

findings is found below.
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Figure 4.6: A table of statements concerning the auxiliary features of the application. These are

put to the students.

Figure 4.7: A graph representing the average response for each statement outlined in Figure 4.6.

The average score was 1.92 across all statements. In general, the students liked the auxiliary

features. They all agreed that challenges and examples were a necessary component of the

application. They liked the diverse collection of examples and challenges that were made

available to them. A participant noted the challenges themselves should be more elaborate. They

should not just examine one thing but many things. An example of this could be to incorporate

challenges which involve the user transforming a deterministic finite automaton to an equivalent

pushdown automaton. This would also address our previous concern that too little comparison is

made between machines.
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4.2.6 General Analysis

In this section, we asked a set of generic questions. These looked to explore the broader role of

the application from the perspective of the student. The entire survey for this section is available

in the appendix. A summary of its findings is found below.

Figure 4.8: A table of general statements relating to the application. These are put to the students.

Figure 4.9: A graph representing the average response for each statement outlined in Figure 4.8.

The users all agreed that the integration of this tool within a university course would be beneficial

for the user. All participants had prior exposure to automata concepts. Participants recognised

that this system represents the process of execution effectively. The respondents appreciated the

graphical interface and how simple it was. They also liked the number of added features that

were made available to the user.

The majority of participants believed that a web solution was the best approach for this application.

They noted that a web application’s ease of access would make the application more convenient

for the user.
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4.2.7 Summary

In summation, the participants responded well to the application. A more extensive analysis

would need to take place that considers the long-term impacts. These informal experiments were

useful for measuring the engagement levels of the application.

We identified from the surveys that a help feature is necessary to ensure that a user is familiar with

the mechanisms of the application. As a result, we included a help section within the application

that outlined the primary procedures to the user.



60

Chapter 5

Conclusion

We have developed a tool in this project that builds on existing alternatives. It consolidates

fundamental learning strategies through its design. The tool tries to simplify abstract devices to

mechanisms that the user can effectively reason with. It does this by using accurate representations

and expressive functionality. The primary goal of this project was to introduce an automata

simulation tool that could be integrated and used in conjunction with the curriculum at universities.

We carried out a systematic review of the application and its effectiveness at achieving the central

objectives illustrated in this paper. The tool definitively outperforms alternative applications.

Most participants in our study strongly agreed that the application provides the necessary working

features to support the student. They also noted that there is an effective use of illustrations

and animations throughout the application. Unanimously, students believed that learners would

benefit from integrating this tool into a study program. A more extensive analysis would need to

take place that considers the long-term effects of the system.

In concluding, technology provides the capabilities to represent and teach abstract concepts in

computational theory effectively. The broader aim of this project is to help realise this potential.

We have outlined a process for constructing a pedagogical system that achieves this.

5.1 Future Works

The effectiveness of an educational platform can be measured on how well it communicates an

idea (or a collection of related ideas) to the user. In this regard, an educational application can

continually be improved by integrating more functions. The challenge arises in not bloating a

system with too many features. As seen with JFLAP, the introduction of too many functions

overwhelms the user.
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5.1.1 Extensions

Community Integration

The application could build a community of users that actively participate. This would be in the

hope of encouraging collaborative learning, where students give their knowledge of what is to be

understood, collaborate with each other, give guidance, and engage in appropriate and important

processes that support them — a more active learning approach. Two possible strategies have

been identified below.

The first is an online repository of user-defined machines. For this feature, the user is encouraged

to publish their own machines to allow others to run them. This offers the users a chance to

share their conclusions with the broader community. Users can also discuss and review published

machines on the platform. This will permit clarification of ideas through discussion. The second

is an online repository of user-defined challenges. For this feature, the user is encouraged to

publish their challenges to allow others to solve them. Users can post their solutions online. An

active community would generate a broad range of challenges that would engage the user.

Migration To Web

It might be more useful if the tool is rewritten as a web application. As was identified during our

evaluation, a lot of students preferred a web solution over a desktop one. Web applications have

conventionally been slower than desktop programs. The recent emergence of frameworks like

React has allowed web applications to be more similar to conventional desktop applications. For

the current solution, we are unable to enforce updates on the user. The application at a certain

point may contain bugs or lack necessary features. Such situations would require a mandatory

update to fix.

A web application is more accessible to students and will enable the application to operate without

any constraint within a school environment. Oracle, as of January 2019, stopped supporting Java

8 (Ora [2019]). The application needs to be continually updated to operate on modern operating

systems. This will have the reverse effect of depreciating the tool for older systems that present

no support for later Java versions. This application is written in Java 12.
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